Files
FastDeploy/fastdeploy/entrypoints/engine_client.py
luukunn aebe12a58d
Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
[fix]update apply_chat_template (#4249)
* [fix]Modify follow-up push parameters and Modify the verification method for thinking length (#4086)

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* 续推参数  generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式

* add completion_token_ids

* add logger

* fix reasoning_max_tokens ParameterError

* add unittest

* add unittest

* add unittest

* add unittest

* add unittest

* add unit test

* fix

* [fix]update apply_chat_template (#4137)

* update apply_chat_template

* fix unittest

* fix unittest

* fix

* fix

* fix unit test

* fix

* fix unit test

* add unit test
2025-09-25 16:41:56 +08:00

447 lines
19 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import inspect
import os
import time
import traceback
import uuid
import numpy as np
from filelock import FileLock
from fastdeploy import envs
from fastdeploy.config import ModelConfig
from fastdeploy.entrypoints.openai.utils import DealerConnectionManager
from fastdeploy.envs import FD_SUPPORT_MAX_CONNECTIONS
from fastdeploy.input.preprocess import InputPreprocessor
from fastdeploy.inter_communicator import (
IPCSignal,
KVCacheStatus,
ModelWeightsStatus,
PrefixTreeStatus,
ZmqIpcClient,
)
from fastdeploy.metrics.work_metrics import work_process_metrics
from fastdeploy.multimodal.registry import MultimodalRegistry
from fastdeploy.platforms import current_platform
from fastdeploy.utils import EngineError, StatefulSemaphore, api_server_logger
class EngineClient:
"""
EngineClient is a class that handles the communication between the client and the server.
"""
def __init__(
self,
model_name_or_path,
tokenizer,
max_model_len,
tensor_parallel_size,
pid,
port,
limit_mm_per_prompt,
mm_processor_kwargs,
# enable_mm=False,
reasoning_parser=None,
data_parallel_size=1,
enable_logprob=False,
workers=1,
tool_parser=None,
enable_prefix_caching=None,
splitwise_role=None,
):
import fastdeploy.model_executor.models # noqa: F401
architectures = ModelConfig({"model": model_name_or_path}).architectures[0]
if MultimodalRegistry.contains_model(architectures):
self.enable_mm = True
else:
self.enable_mm = False
input_processor = InputPreprocessor(
tokenizer,
reasoning_parser,
limit_mm_per_prompt,
mm_processor_kwargs,
self.enable_mm,
tool_parser,
)
self.enable_logprob = enable_logprob
self.reasoning_parser = reasoning_parser
self.data_processor = input_processor.create_processor()
self.max_model_len = max_model_len
self.enable_prefix_caching = enable_prefix_caching
self.enable_splitwise = splitwise_role != "mixed"
max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
if tensor_parallel_size <= max_chips_per_node:
self.is_master = True
else:
self.is_master = False
array_size = min(max_chips_per_node, tensor_parallel_size)
self.worker_healthy_live_recorded_time_array = np.zeros(shape=[array_size], dtype=np.int32)
self.worker_healthy_live_signal = IPCSignal(
name="worker_healthy_live_signal",
array=self.worker_healthy_live_recorded_time_array,
dtype=np.int32,
suffix=port,
create=False,
)
self.semaphore = StatefulSemaphore((FD_SUPPORT_MAX_CONNECTIONS + workers - 1) // workers)
model_weights_status = np.zeros([1], dtype=np.int32)
self.model_weights_status_signal = IPCSignal(
name="model_weights_status",
array=model_weights_status,
dtype=np.int32,
suffix=port,
create=False,
)
prefix_tree_status = np.zeros([1], dtype=np.int32)
self.prefix_tree_status_signal = IPCSignal(
name="prefix_tree_status",
array=prefix_tree_status,
dtype=np.int32,
suffix=port,
create=False,
)
kv_cache_status = np.zeros([1], dtype=np.int32)
self.kv_cache_status_signal = IPCSignal(
name="kv_cache_status",
array=kv_cache_status,
dtype=np.int32,
suffix=port,
create=False,
)
self.connection_manager = DealerConnectionManager(
pid, max_connections=int(os.getenv("FD_DEALER_CONNECTIONS", 50))
)
self.connection_initialized = False
self.clear_update_lock = FileLock(f"/tmp/fd_weight_clear_update_lock__pid{pid}_port{port}.lock")
def create_zmq_client(self, model, mode):
"""
Create a ZMQ client.
"""
self.zmq_client = ZmqIpcClient(model, mode)
self.zmq_client.connect()
def check_model_weight_status(self):
return self.model_weights_status_signal.value[0] < 0
async def format_and_add_data(self, prompts: dict):
"""
Format the request data and send the request to the server.
"""
if "request_id" not in prompts:
request_id = str(uuid.uuid4())
prompts["request_id"] = request_id
if "max_tokens" not in prompts:
prompts["max_tokens"] = self.max_model_len - 1
await self.add_requests(prompts)
return prompts["prompt_token_ids"]
async def add_requests(self, task):
"""
Add a new request to the queue.
Args:
task: Request A dictionary representing the request.
sampling_params: A dictionary representing the sampling parameters.
Returns:
None
"""
task["preprocess_start_time"] = time.time()
try:
chat_template_kwargs = task.get("chat_template_kwargs", {})
chat_template_kwargs.update({"chat_template": task.get("chat_template"), "tools": task.get("tools")})
task["chat_template_kwargs"] = chat_template_kwargs
if inspect.iscoroutinefunction(self.data_processor.process_request_dict):
await self.data_processor.process_request_dict(task, self.max_model_len)
else:
self.data_processor.process_request_dict(task, self.max_model_len)
task["prompt_token_ids_len"] = len(task["prompt_token_ids"])
input_ids_len = task["prompt_token_ids_len"]
task["max_tokens"] = min(self.max_model_len - input_ids_len, task.get("max_tokens"))
min_tokens = task.get("min_tokens", 1)
if "messages" in task:
del task["messages"]
api_server_logger.info(f"task['max_tokens']:{task['max_tokens']}")
work_process_metrics.request_params_max_tokens.observe(task["max_tokens"])
work_process_metrics.prompt_tokens_total.inc(input_ids_len)
work_process_metrics.request_prompt_tokens.observe(input_ids_len)
except Exception as e:
api_server_logger.error(f"add_requests error: {e}, {str(traceback.format_exc())}")
raise EngineError(str(e), error_code=400)
if input_ids_len + min_tokens >= self.max_model_len:
error_msg = (
f"Input text is too long, input_ids_len ({input_ids_len}) "
f"+ min_tokens({min_tokens}) >= max_model_len({self.max_model_len})"
)
api_server_logger.error(error_msg)
raise EngineError(error_msg, error_code=400)
if input_ids_len > self.max_model_len:
error_msg = (
f"Length of input token({input_ids_len}) exceeds the limit max_model_len({self.max_model_len})."
)
api_server_logger.error(error_msg)
raise EngineError(error_msg, error_code=400)
if "stop_seqs_len" in task:
stop_seqs_len = task["stop_seqs_len"]
max_stop_seqs_num = int(envs.FD_MAX_STOP_SEQS_NUM)
if len(stop_seqs_len) > max_stop_seqs_num:
error_msg = (
f"Length of stop ({stop_seqs_len}) exceeds the limit max_stop_seqs_num({max_stop_seqs_num})."
"Please reduce the number of stop or set a lager max_stop_seqs_num by `FD_MAX_STOP_SEQS_NUM`"
)
api_server_logger.error(error_msg)
raise EngineError(error_msg, error_code=400)
stop_seqs_max_len = int(envs.FD_STOP_SEQS_MAX_LEN)
for single_stop_seq_len in stop_seqs_len:
if single_stop_seq_len > stop_seqs_max_len:
error_msg = (
f"Length of stop_seqs({single_stop_seq_len}) exceeds the limit stop_seqs_max_len({stop_seqs_max_len})."
"Please reduce the length of stop sequences or set a larger stop_seqs_max_len by `FD_STOP_SEQS_MAX_LEN`"
)
api_server_logger.error(error_msg)
raise EngineError(error_msg, error_code=400)
task["preprocess_end_time"] = time.time()
preprocess_cost_time = task["preprocess_end_time"] - task["preprocess_start_time"]
api_server_logger.info(
f"Cache request with request_id ({task.get('request_id')}), "
f"preprocess time cost {preprocess_cost_time}"
)
self.vaild_parameters(task)
api_server_logger.debug(f"Recieve task: {task}")
try:
if not self.enable_mm:
self.zmq_client.send_json(task)
else:
self.zmq_client.send_pyobj(task)
except Exception as e:
api_server_logger.error(f"zmq_client send task error: {e}, {str(traceback.format_exc())}")
raise EngineError(str(e), error_code=400)
def vaild_parameters(self, data):
"""
Validate stream options
"""
if data.get("n") is not None:
if data["n"] != 1:
raise ValueError("n only support 1.")
if data.get("max_tokens") is not None:
if data["max_tokens"] < 1 or data["max_tokens"] >= self.max_model_len:
raise ValueError(f"max_tokens can be defined [1, {self.max_model_len}).")
if data.get("reasoning_max_tokens") is not None:
if data["reasoning_max_tokens"] < 1:
raise ValueError("reasoning_max_tokens must be greater than 1")
if data["reasoning_max_tokens"] > data["max_tokens"]:
data["reasoning_max_tokens"] = data["max_tokens"]
api_server_logger.warning(
f"req_id: {data['request_id']}, reasoning_max_tokens exceeds max_tokens, the value of reasoning_max_tokens will be adjusted to match that of max_tokens"
)
if data.get("top_p") is not None:
if data["top_p"] > 1 or data["top_p"] < 0:
raise ValueError("top_p value can only be defined [0, 1].")
if data.get("frequency_penalty") is not None:
if not -2.0 <= data["frequency_penalty"] <= 2.0:
raise ValueError("frequency_penalty must be in [-2, 2]")
if data.get("temperature") is not None:
if data["temperature"] < 0:
raise ValueError("temperature must be non-negative")
if data.get("presence_penalty") is not None:
if not -2.0 <= data["presence_penalty"] <= 2.0:
raise ValueError("presence_penalty must be in [-2, 2]")
if data.get("seed") is not None:
if not 0 <= data["seed"] <= 922337203685477580:
raise ValueError("seed must be in [0, 922337203685477580]")
if data.get("stream_options") and not data.get("stream"):
raise ValueError("Stream options can only be defined when `stream=True`.")
# logprobs
logprobs = data.get("logprobs")
top_logprobs = None
if isinstance(logprobs, bool) and logprobs:
if not self.enable_logprob:
err_msg = "Logprobs is disabled, please enable it in startup config."
api_server_logger.error(err_msg)
raise ValueError(err_msg)
top_logprobs = data.get("top_logprobs")
elif isinstance(logprobs, int):
top_logprobs = logprobs
elif logprobs:
raise ValueError("Invalid type for 'logprobs'")
# enable_logprob
if top_logprobs:
if not self.enable_logprob:
err_msg = "Logprobs is disabled, please enable it in startup config."
api_server_logger.error(err_msg)
raise ValueError(err_msg)
if not isinstance(top_logprobs, int):
err_type = type(top_logprobs).__name__
err_msg = f"Invalid type for 'top_logprobs': expected int but got {err_type}."
api_server_logger.error(err_msg)
raise ValueError(err_msg)
if top_logprobs < 0:
err_msg = f"Invalid 'top_logprobs': must be >= 0, got {top_logprobs}."
api_server_logger.error(err_msg)
raise ValueError(err_msg)
if top_logprobs > 20:
err_msg = "Invalid value for 'top_logprobs': must be <= 20."
api_server_logger.error(err_msg)
raise ValueError(err_msg)
def check_health(self, time_interval_threashold=30):
"""
Check the health of the model server by checking whether all workers are alive.
"""
if self.worker_healthy_live_signal.value[0]:
elapsed_time = time.time() - self.worker_healthy_live_signal.value[0]
if elapsed_time > time_interval_threashold:
return False, "Worker Service Not Healthy"
return True, ""
def is_workers_alive(self):
"""
Check the health of the model server by checking whether all workers are alive.
"""
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.NORMAL:
return True, ""
else:
return False, "No model weight enabled"
def update_model_weight(self, timeout=300):
"""
Update the model weight by sending a signal to the server.
1 : worker receive the signal and start to update model weight
2 : worker update finish and notify client
"""
with self.clear_update_lock:
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.NORMAL:
return True, ""
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.UPDATING:
return False, "worker is updating model weight already"
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARING:
return False, "worker is clearing model weight, cannot update now"
self.model_weights_status_signal.value[0] = ModelWeightsStatus.UPDATING
if self.enable_prefix_caching or self.enable_splitwise:
self.kv_cache_status_signal.value[0] = KVCacheStatus.UPDATING
if self.enable_prefix_caching:
self.prefix_tree_status_signal.value[0] = PrefixTreeStatus.UPDATING
api_server_logger.info(f"start update model weight {self.model_weights_status_signal.value}")
all_updated = False
while timeout >= 0 and not all_updated:
api_server_logger.info(
f"Updating model weights.. "
f"model_weights_status: {self.model_weights_status_signal.value[0]}, "
f"prefix_tree_status: {self.prefix_tree_status_signal.value[0]}, "
f"kv_cache_status: {self.kv_cache_status_signal.value[0]} "
)
weight_updated = self.model_weights_status_signal.value[0] == ModelWeightsStatus.NORMAL
cache_updated = self.kv_cache_status_signal.value[0] == KVCacheStatus.NORMAL
prefix_updated = self.prefix_tree_status_signal.value[0] == PrefixTreeStatus.NORMAL
if self.enable_prefix_caching or self.enable_splitwise:
if self.enable_prefix_caching:
all_updated = weight_updated and cache_updated and prefix_updated
else:
all_updated = weight_updated and cache_updated
else:
all_updated = weight_updated
time.sleep(1)
timeout -= 1
if timeout < 0:
return False, "Update model weight timeout"
time.sleep(1)
return True, ""
def clear_load_weight(self, timeout=300):
"""
Clear the load weight status.
-1 : worker receive the signal and start to clear model weight
-2 : worker clear finish and notify client
"""
with self.clear_update_lock:
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARED:
return True, ""
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARING:
return False, "worker is clearing model weight already"
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.UPDATING:
return False, "worker is updating model weight, cannot clear now"
self.model_weights_status_signal.value[0] = ModelWeightsStatus.CLEARING
if self.enable_prefix_caching or self.enable_splitwise:
self.kv_cache_status_signal.value[0] = KVCacheStatus.CLEARING
if self.enable_prefix_caching:
self.prefix_tree_status_signal.value[0] = PrefixTreeStatus.CLEARING
api_server_logger.info(f"start clear model weight {self.model_weights_status_signal.value}")
all_cleared = False
while timeout >= 0 and not all_cleared:
api_server_logger.info(
f"Clearing model weights.. "
f"model_weights_status: {self.model_weights_status_signal.value[0]}, "
f"prefix_tree_status: {self.prefix_tree_status_signal.value[0]}, "
f"kv_cache_status: {self.kv_cache_status_signal.value[0]} "
)
weight_cleared = self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARED
cache_cleared = self.kv_cache_status_signal.value[0] == KVCacheStatus.CLEARED
prefix_cleared = self.prefix_tree_status_signal.value[0] == PrefixTreeStatus.CLEARED
if self.enable_prefix_caching or self.enable_splitwise:
if self.enable_prefix_caching:
all_cleared = weight_cleared and cache_cleared and prefix_cleared
else:
all_cleared = weight_cleared and cache_cleared
else:
all_cleared = weight_cleared
time.sleep(1)
timeout -= 1
if timeout < 0:
return False, "Clear model weight timeout"
time.sleep(1)
return True, ""