mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-26 20:41:53 +08:00

Some checks failed
CE Compile Job / ce_job_pre_check (push) Has been cancelled
CE Compile Job / print_ce_job_pre_check_outputs (push) Has been cancelled
CE Compile Job / FD-Clone-Linux (push) Has been cancelled
CE Compile Job / Show Code Archive Output (push) Has been cancelled
CE Compile Job / BUILD_SM8090 (push) Has been cancelled
CE Compile Job / BUILD_SM8689 (push) Has been cancelled
CE Compile Job / CE_UPLOAD (push) Has been cancelled
* [fix]Modify follow-up push parameters and Modify the verification method for thinking length (#4086) * 续推参数 generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式 * 续推参数 generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式 * 续推参数 generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式 * 续推参数 generated_token_ids 修改成 completion_token_ids;修改思考长度校验方式 * add completion_token_ids * add logger * fix reasoning_max_tokens ParameterError * add unittest * add unittest * add unittest * add unittest * add unittest * add unit test * fix * [fix]update apply_chat_template (#4137) * update apply_chat_template * fix unittest * fix unittest * fix * fix * fix unit test * fix * fix unit test * add unit test
447 lines
19 KiB
Python
447 lines
19 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import inspect
|
|
import os
|
|
import time
|
|
import traceback
|
|
import uuid
|
|
|
|
import numpy as np
|
|
from filelock import FileLock
|
|
|
|
from fastdeploy import envs
|
|
from fastdeploy.config import ModelConfig
|
|
from fastdeploy.entrypoints.openai.utils import DealerConnectionManager
|
|
from fastdeploy.envs import FD_SUPPORT_MAX_CONNECTIONS
|
|
from fastdeploy.input.preprocess import InputPreprocessor
|
|
from fastdeploy.inter_communicator import (
|
|
IPCSignal,
|
|
KVCacheStatus,
|
|
ModelWeightsStatus,
|
|
PrefixTreeStatus,
|
|
ZmqIpcClient,
|
|
)
|
|
from fastdeploy.metrics.work_metrics import work_process_metrics
|
|
from fastdeploy.multimodal.registry import MultimodalRegistry
|
|
from fastdeploy.platforms import current_platform
|
|
from fastdeploy.utils import EngineError, StatefulSemaphore, api_server_logger
|
|
|
|
|
|
class EngineClient:
|
|
"""
|
|
EngineClient is a class that handles the communication between the client and the server.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model_name_or_path,
|
|
tokenizer,
|
|
max_model_len,
|
|
tensor_parallel_size,
|
|
pid,
|
|
port,
|
|
limit_mm_per_prompt,
|
|
mm_processor_kwargs,
|
|
# enable_mm=False,
|
|
reasoning_parser=None,
|
|
data_parallel_size=1,
|
|
enable_logprob=False,
|
|
workers=1,
|
|
tool_parser=None,
|
|
enable_prefix_caching=None,
|
|
splitwise_role=None,
|
|
):
|
|
import fastdeploy.model_executor.models # noqa: F401
|
|
|
|
architectures = ModelConfig({"model": model_name_or_path}).architectures[0]
|
|
if MultimodalRegistry.contains_model(architectures):
|
|
self.enable_mm = True
|
|
else:
|
|
self.enable_mm = False
|
|
|
|
input_processor = InputPreprocessor(
|
|
tokenizer,
|
|
reasoning_parser,
|
|
limit_mm_per_prompt,
|
|
mm_processor_kwargs,
|
|
self.enable_mm,
|
|
tool_parser,
|
|
)
|
|
self.enable_logprob = enable_logprob
|
|
self.reasoning_parser = reasoning_parser
|
|
self.data_processor = input_processor.create_processor()
|
|
self.max_model_len = max_model_len
|
|
self.enable_prefix_caching = enable_prefix_caching
|
|
self.enable_splitwise = splitwise_role != "mixed"
|
|
max_chips_per_node = 16 if current_platform.is_iluvatar() else 8
|
|
|
|
if tensor_parallel_size <= max_chips_per_node:
|
|
self.is_master = True
|
|
else:
|
|
self.is_master = False
|
|
|
|
array_size = min(max_chips_per_node, tensor_parallel_size)
|
|
self.worker_healthy_live_recorded_time_array = np.zeros(shape=[array_size], dtype=np.int32)
|
|
self.worker_healthy_live_signal = IPCSignal(
|
|
name="worker_healthy_live_signal",
|
|
array=self.worker_healthy_live_recorded_time_array,
|
|
dtype=np.int32,
|
|
suffix=port,
|
|
create=False,
|
|
)
|
|
self.semaphore = StatefulSemaphore((FD_SUPPORT_MAX_CONNECTIONS + workers - 1) // workers)
|
|
model_weights_status = np.zeros([1], dtype=np.int32)
|
|
self.model_weights_status_signal = IPCSignal(
|
|
name="model_weights_status",
|
|
array=model_weights_status,
|
|
dtype=np.int32,
|
|
suffix=port,
|
|
create=False,
|
|
)
|
|
prefix_tree_status = np.zeros([1], dtype=np.int32)
|
|
self.prefix_tree_status_signal = IPCSignal(
|
|
name="prefix_tree_status",
|
|
array=prefix_tree_status,
|
|
dtype=np.int32,
|
|
suffix=port,
|
|
create=False,
|
|
)
|
|
kv_cache_status = np.zeros([1], dtype=np.int32)
|
|
self.kv_cache_status_signal = IPCSignal(
|
|
name="kv_cache_status",
|
|
array=kv_cache_status,
|
|
dtype=np.int32,
|
|
suffix=port,
|
|
create=False,
|
|
)
|
|
self.connection_manager = DealerConnectionManager(
|
|
pid, max_connections=int(os.getenv("FD_DEALER_CONNECTIONS", 50))
|
|
)
|
|
self.connection_initialized = False
|
|
self.clear_update_lock = FileLock(f"/tmp/fd_weight_clear_update_lock__pid{pid}_port{port}.lock")
|
|
|
|
def create_zmq_client(self, model, mode):
|
|
"""
|
|
Create a ZMQ client.
|
|
"""
|
|
self.zmq_client = ZmqIpcClient(model, mode)
|
|
self.zmq_client.connect()
|
|
|
|
def check_model_weight_status(self):
|
|
return self.model_weights_status_signal.value[0] < 0
|
|
|
|
async def format_and_add_data(self, prompts: dict):
|
|
"""
|
|
Format the request data and send the request to the server.
|
|
"""
|
|
if "request_id" not in prompts:
|
|
request_id = str(uuid.uuid4())
|
|
prompts["request_id"] = request_id
|
|
|
|
if "max_tokens" not in prompts:
|
|
prompts["max_tokens"] = self.max_model_len - 1
|
|
|
|
await self.add_requests(prompts)
|
|
return prompts["prompt_token_ids"]
|
|
|
|
async def add_requests(self, task):
|
|
"""
|
|
Add a new request to the queue.
|
|
|
|
Args:
|
|
task: Request A dictionary representing the request.
|
|
sampling_params: A dictionary representing the sampling parameters.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
|
|
task["preprocess_start_time"] = time.time()
|
|
try:
|
|
chat_template_kwargs = task.get("chat_template_kwargs", {})
|
|
chat_template_kwargs.update({"chat_template": task.get("chat_template"), "tools": task.get("tools")})
|
|
task["chat_template_kwargs"] = chat_template_kwargs
|
|
if inspect.iscoroutinefunction(self.data_processor.process_request_dict):
|
|
await self.data_processor.process_request_dict(task, self.max_model_len)
|
|
else:
|
|
self.data_processor.process_request_dict(task, self.max_model_len)
|
|
|
|
task["prompt_token_ids_len"] = len(task["prompt_token_ids"])
|
|
input_ids_len = task["prompt_token_ids_len"]
|
|
task["max_tokens"] = min(self.max_model_len - input_ids_len, task.get("max_tokens"))
|
|
min_tokens = task.get("min_tokens", 1)
|
|
if "messages" in task:
|
|
del task["messages"]
|
|
api_server_logger.info(f"task['max_tokens']:{task['max_tokens']}")
|
|
work_process_metrics.request_params_max_tokens.observe(task["max_tokens"])
|
|
work_process_metrics.prompt_tokens_total.inc(input_ids_len)
|
|
work_process_metrics.request_prompt_tokens.observe(input_ids_len)
|
|
except Exception as e:
|
|
api_server_logger.error(f"add_requests error: {e}, {str(traceback.format_exc())}")
|
|
raise EngineError(str(e), error_code=400)
|
|
|
|
if input_ids_len + min_tokens >= self.max_model_len:
|
|
error_msg = (
|
|
f"Input text is too long, input_ids_len ({input_ids_len}) "
|
|
f"+ min_tokens({min_tokens}) >= max_model_len({self.max_model_len})"
|
|
)
|
|
api_server_logger.error(error_msg)
|
|
raise EngineError(error_msg, error_code=400)
|
|
|
|
if input_ids_len > self.max_model_len:
|
|
error_msg = (
|
|
f"Length of input token({input_ids_len}) exceeds the limit max_model_len({self.max_model_len})."
|
|
)
|
|
api_server_logger.error(error_msg)
|
|
raise EngineError(error_msg, error_code=400)
|
|
|
|
if "stop_seqs_len" in task:
|
|
stop_seqs_len = task["stop_seqs_len"]
|
|
max_stop_seqs_num = int(envs.FD_MAX_STOP_SEQS_NUM)
|
|
if len(stop_seqs_len) > max_stop_seqs_num:
|
|
error_msg = (
|
|
f"Length of stop ({stop_seqs_len}) exceeds the limit max_stop_seqs_num({max_stop_seqs_num})."
|
|
"Please reduce the number of stop or set a lager max_stop_seqs_num by `FD_MAX_STOP_SEQS_NUM`"
|
|
)
|
|
api_server_logger.error(error_msg)
|
|
raise EngineError(error_msg, error_code=400)
|
|
stop_seqs_max_len = int(envs.FD_STOP_SEQS_MAX_LEN)
|
|
for single_stop_seq_len in stop_seqs_len:
|
|
if single_stop_seq_len > stop_seqs_max_len:
|
|
error_msg = (
|
|
f"Length of stop_seqs({single_stop_seq_len}) exceeds the limit stop_seqs_max_len({stop_seqs_max_len})."
|
|
"Please reduce the length of stop sequences or set a larger stop_seqs_max_len by `FD_STOP_SEQS_MAX_LEN`"
|
|
)
|
|
api_server_logger.error(error_msg)
|
|
raise EngineError(error_msg, error_code=400)
|
|
|
|
task["preprocess_end_time"] = time.time()
|
|
preprocess_cost_time = task["preprocess_end_time"] - task["preprocess_start_time"]
|
|
api_server_logger.info(
|
|
f"Cache request with request_id ({task.get('request_id')}), "
|
|
f"preprocess time cost {preprocess_cost_time}"
|
|
)
|
|
|
|
self.vaild_parameters(task)
|
|
api_server_logger.debug(f"Recieve task: {task}")
|
|
try:
|
|
if not self.enable_mm:
|
|
self.zmq_client.send_json(task)
|
|
else:
|
|
self.zmq_client.send_pyobj(task)
|
|
except Exception as e:
|
|
api_server_logger.error(f"zmq_client send task error: {e}, {str(traceback.format_exc())}")
|
|
raise EngineError(str(e), error_code=400)
|
|
|
|
def vaild_parameters(self, data):
|
|
"""
|
|
Validate stream options
|
|
"""
|
|
|
|
if data.get("n") is not None:
|
|
if data["n"] != 1:
|
|
raise ValueError("n only support 1.")
|
|
|
|
if data.get("max_tokens") is not None:
|
|
if data["max_tokens"] < 1 or data["max_tokens"] >= self.max_model_len:
|
|
raise ValueError(f"max_tokens can be defined [1, {self.max_model_len}).")
|
|
|
|
if data.get("reasoning_max_tokens") is not None:
|
|
if data["reasoning_max_tokens"] < 1:
|
|
raise ValueError("reasoning_max_tokens must be greater than 1")
|
|
if data["reasoning_max_tokens"] > data["max_tokens"]:
|
|
data["reasoning_max_tokens"] = data["max_tokens"]
|
|
api_server_logger.warning(
|
|
f"req_id: {data['request_id']}, reasoning_max_tokens exceeds max_tokens, the value of reasoning_max_tokens will be adjusted to match that of max_tokens"
|
|
)
|
|
|
|
if data.get("top_p") is not None:
|
|
if data["top_p"] > 1 or data["top_p"] < 0:
|
|
raise ValueError("top_p value can only be defined [0, 1].")
|
|
|
|
if data.get("frequency_penalty") is not None:
|
|
if not -2.0 <= data["frequency_penalty"] <= 2.0:
|
|
raise ValueError("frequency_penalty must be in [-2, 2]")
|
|
|
|
if data.get("temperature") is not None:
|
|
if data["temperature"] < 0:
|
|
raise ValueError("temperature must be non-negative")
|
|
|
|
if data.get("presence_penalty") is not None:
|
|
if not -2.0 <= data["presence_penalty"] <= 2.0:
|
|
raise ValueError("presence_penalty must be in [-2, 2]")
|
|
|
|
if data.get("seed") is not None:
|
|
if not 0 <= data["seed"] <= 922337203685477580:
|
|
raise ValueError("seed must be in [0, 922337203685477580]")
|
|
|
|
if data.get("stream_options") and not data.get("stream"):
|
|
raise ValueError("Stream options can only be defined when `stream=True`.")
|
|
|
|
# logprobs
|
|
logprobs = data.get("logprobs")
|
|
top_logprobs = None
|
|
|
|
if isinstance(logprobs, bool) and logprobs:
|
|
if not self.enable_logprob:
|
|
err_msg = "Logprobs is disabled, please enable it in startup config."
|
|
api_server_logger.error(err_msg)
|
|
raise ValueError(err_msg)
|
|
top_logprobs = data.get("top_logprobs")
|
|
elif isinstance(logprobs, int):
|
|
top_logprobs = logprobs
|
|
elif logprobs:
|
|
raise ValueError("Invalid type for 'logprobs'")
|
|
|
|
# enable_logprob
|
|
if top_logprobs:
|
|
if not self.enable_logprob:
|
|
err_msg = "Logprobs is disabled, please enable it in startup config."
|
|
api_server_logger.error(err_msg)
|
|
raise ValueError(err_msg)
|
|
|
|
if not isinstance(top_logprobs, int):
|
|
err_type = type(top_logprobs).__name__
|
|
err_msg = f"Invalid type for 'top_logprobs': expected int but got {err_type}."
|
|
api_server_logger.error(err_msg)
|
|
raise ValueError(err_msg)
|
|
|
|
if top_logprobs < 0:
|
|
err_msg = f"Invalid 'top_logprobs': must be >= 0, got {top_logprobs}."
|
|
api_server_logger.error(err_msg)
|
|
raise ValueError(err_msg)
|
|
|
|
if top_logprobs > 20:
|
|
err_msg = "Invalid value for 'top_logprobs': must be <= 20."
|
|
api_server_logger.error(err_msg)
|
|
raise ValueError(err_msg)
|
|
|
|
def check_health(self, time_interval_threashold=30):
|
|
"""
|
|
Check the health of the model server by checking whether all workers are alive.
|
|
|
|
"""
|
|
if self.worker_healthy_live_signal.value[0]:
|
|
elapsed_time = time.time() - self.worker_healthy_live_signal.value[0]
|
|
if elapsed_time > time_interval_threashold:
|
|
return False, "Worker Service Not Healthy"
|
|
|
|
return True, ""
|
|
|
|
def is_workers_alive(self):
|
|
"""
|
|
Check the health of the model server by checking whether all workers are alive.
|
|
|
|
"""
|
|
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.NORMAL:
|
|
return True, ""
|
|
else:
|
|
return False, "No model weight enabled"
|
|
|
|
def update_model_weight(self, timeout=300):
|
|
"""
|
|
Update the model weight by sending a signal to the server.
|
|
1 : worker receive the signal and start to update model weight
|
|
2 : worker update finish and notify client
|
|
"""
|
|
with self.clear_update_lock:
|
|
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.NORMAL:
|
|
return True, ""
|
|
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.UPDATING:
|
|
return False, "worker is updating model weight already"
|
|
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARING:
|
|
return False, "worker is clearing model weight, cannot update now"
|
|
|
|
self.model_weights_status_signal.value[0] = ModelWeightsStatus.UPDATING
|
|
if self.enable_prefix_caching or self.enable_splitwise:
|
|
self.kv_cache_status_signal.value[0] = KVCacheStatus.UPDATING
|
|
if self.enable_prefix_caching:
|
|
self.prefix_tree_status_signal.value[0] = PrefixTreeStatus.UPDATING
|
|
api_server_logger.info(f"start update model weight {self.model_weights_status_signal.value}")
|
|
all_updated = False
|
|
while timeout >= 0 and not all_updated:
|
|
api_server_logger.info(
|
|
f"Updating model weights.. "
|
|
f"model_weights_status: {self.model_weights_status_signal.value[0]}, "
|
|
f"prefix_tree_status: {self.prefix_tree_status_signal.value[0]}, "
|
|
f"kv_cache_status: {self.kv_cache_status_signal.value[0]} "
|
|
)
|
|
weight_updated = self.model_weights_status_signal.value[0] == ModelWeightsStatus.NORMAL
|
|
cache_updated = self.kv_cache_status_signal.value[0] == KVCacheStatus.NORMAL
|
|
prefix_updated = self.prefix_tree_status_signal.value[0] == PrefixTreeStatus.NORMAL
|
|
if self.enable_prefix_caching or self.enable_splitwise:
|
|
if self.enable_prefix_caching:
|
|
all_updated = weight_updated and cache_updated and prefix_updated
|
|
else:
|
|
all_updated = weight_updated and cache_updated
|
|
else:
|
|
all_updated = weight_updated
|
|
time.sleep(1)
|
|
timeout -= 1
|
|
if timeout < 0:
|
|
return False, "Update model weight timeout"
|
|
time.sleep(1)
|
|
return True, ""
|
|
|
|
def clear_load_weight(self, timeout=300):
|
|
"""
|
|
Clear the load weight status.
|
|
-1 : worker receive the signal and start to clear model weight
|
|
-2 : worker clear finish and notify client
|
|
"""
|
|
|
|
with self.clear_update_lock:
|
|
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARED:
|
|
return True, ""
|
|
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARING:
|
|
return False, "worker is clearing model weight already"
|
|
if self.model_weights_status_signal.value[0] == ModelWeightsStatus.UPDATING:
|
|
return False, "worker is updating model weight, cannot clear now"
|
|
|
|
self.model_weights_status_signal.value[0] = ModelWeightsStatus.CLEARING
|
|
if self.enable_prefix_caching or self.enable_splitwise:
|
|
self.kv_cache_status_signal.value[0] = KVCacheStatus.CLEARING
|
|
if self.enable_prefix_caching:
|
|
self.prefix_tree_status_signal.value[0] = PrefixTreeStatus.CLEARING
|
|
|
|
api_server_logger.info(f"start clear model weight {self.model_weights_status_signal.value}")
|
|
all_cleared = False
|
|
while timeout >= 0 and not all_cleared:
|
|
api_server_logger.info(
|
|
f"Clearing model weights.. "
|
|
f"model_weights_status: {self.model_weights_status_signal.value[0]}, "
|
|
f"prefix_tree_status: {self.prefix_tree_status_signal.value[0]}, "
|
|
f"kv_cache_status: {self.kv_cache_status_signal.value[0]} "
|
|
)
|
|
weight_cleared = self.model_weights_status_signal.value[0] == ModelWeightsStatus.CLEARED
|
|
cache_cleared = self.kv_cache_status_signal.value[0] == KVCacheStatus.CLEARED
|
|
prefix_cleared = self.prefix_tree_status_signal.value[0] == PrefixTreeStatus.CLEARED
|
|
if self.enable_prefix_caching or self.enable_splitwise:
|
|
if self.enable_prefix_caching:
|
|
all_cleared = weight_cleared and cache_cleared and prefix_cleared
|
|
else:
|
|
all_cleared = weight_cleared and cache_cleared
|
|
else:
|
|
all_cleared = weight_cleared
|
|
time.sleep(1)
|
|
timeout -= 1
|
|
|
|
if timeout < 0:
|
|
return False, "Clear model weight timeout"
|
|
time.sleep(1)
|
|
return True, ""
|