mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-30 03:22:05 +08:00 
			
		
		
		
	 6343b0db47
			
		
	
	6343b0db47
	
	
	
		
			
			* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
		
			
				
	
	
		
			73 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			73 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * SPDX-License-Identifier: Apache-2.0
 | |
|  */
 | |
| 
 | |
| // ATTENTION: The code in this file is highly EXPERIMENTAL.
 | |
| // Adventurous users should note that the APIs will probably change.
 | |
| #pragma once
 | |
| 
 | |
| #include "onnxoptimizer/pass.h"
 | |
| 
 | |
| namespace ONNX_NAMESPACE {
 | |
| namespace optimization {
 | |
| 
 | |
| // Note for log and sqrt this optimization is not always right,
 | |
| // because it is a undefined behavior when the input is negative
 | |
| const std::unordered_set<NodeKind> monotone_node_no_axis_kind{kLog, kExp,
 | |
|                                                               kSqrt};
 | |
| 
 | |
| const std::unordered_set<NodeKind> monotone_node_axis_kind{kSoftmax,
 | |
|                                                            kLogSoftmax};
 | |
| 
 | |
| struct EliminateNopMonotoneArgmax final : public PredicateBasedPass {
 | |
|   explicit EliminateNopMonotoneArgmax()
 | |
|       : PredicateBasedPass(PassType::Nop, PassEfficiency::Partial,
 | |
|                            PassOptimizationType::Compute) {}
 | |
| 
 | |
|   std::string getPassName() const override {
 | |
|     return "eliminate_nop_monotone_argmax";
 | |
|   }
 | |
| 
 | |
|   static inline bool satisfies_monotone_condition(int64_t axis, Node* node) {
 | |
|     if (monotone_node_no_axis_kind.find(node->kind()) !=
 | |
|         monotone_node_no_axis_kind.end()) {
 | |
|       return true;
 | |
|     }
 | |
|     if (monotone_node_axis_kind.find(node->kind()) !=
 | |
|         monotone_node_axis_kind.end()) {
 | |
|       if (node->hasAttribute(kaxis)) {
 | |
|         return axis == node->i(kaxis);
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool patternMatchPredicate(Node* node) override {
 | |
|     if (node->kind() == kArgMax) {
 | |
|       if (node->hasAttribute(kaxis)) {
 | |
|         auto node_axis = node->i(kaxis);
 | |
|         return node->inputs().size() == 1 &&
 | |
|                satisfies_monotone_condition(node_axis, node->input()->node());
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool runTransform(Node* node, Graph&, NodeDestroyType&) override {
 | |
|     Node* monotone_node = node->input()->node();
 | |
|     if (monotone_node->output()->uses().size() == 1) {
 | |
|       const bool replacing_success = tryReplacingAllUsesWith(
 | |
|           monotone_node->output(), monotone_node->input());
 | |
|       if (!replacing_success) {
 | |
|         return false;
 | |
|       }
 | |
|       monotone_node->destroy();
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace optimization
 | |
| }  // namespace ONNX_NAMESPACE
 |