mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			76 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			76 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | ||
| //
 | ||
| // Licensed under the Apache License, Version 2.0 (the "License");
 | ||
| // you may not use this file except in compliance with the License.
 | ||
| // You may obtain a copy of the License at
 | ||
| //
 | ||
| //     http://www.apache.org/licenses/LICENSE-2.0
 | ||
| //
 | ||
| // Unless required by applicable law or agreed to in writing, software
 | ||
| // distributed under the License is distributed on an "AS IS" BASIS,
 | ||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
| // See the License for the specific language governing permissions and
 | ||
| // limitations under the License.
 | ||
| 
 | ||
| #ifdef ENABLE_VISION_VISUALIZE
 | ||
| 
 | ||
| #include "fastdeploy/vision/visualize/visualize.h"
 | ||
| #include "opencv2/highgui.hpp"
 | ||
| #include "opencv2/imgproc/imgproc.hpp"
 | ||
| 
 | ||
| namespace fastdeploy {
 | ||
| namespace vision {
 | ||
| 
 | ||
| cv::Mat Visualize::VisMattingAlpha(const cv::Mat& im,
 | ||
|                                    const MattingResult& result,
 | ||
|                                    bool remove_small_connected_area) {
 | ||
|   // 只可视化alpha,fgr(前景)本身就是一张图 不需要可视化
 | ||
|   FDASSERT((!im.empty()), "im can't be empty!");
 | ||
|   FDASSERT((im.channels() == 3), "Only support 3 channels mat!");
 | ||
| 
 | ||
|   auto vis_img = im.clone();
 | ||
|   int out_h = static_cast<int>(result.shape[0]);
 | ||
|   int out_w = static_cast<int>(result.shape[1]);
 | ||
|   int height = im.rows;
 | ||
|   int width = im.cols;
 | ||
|   // alpha to cv::Mat && 避免resize等操作修改外部数据
 | ||
|   std::vector<float> alpha_copy;
 | ||
|   alpha_copy.assign(result.alpha.begin(), result.alpha.end());
 | ||
|   float* alpha_ptr = static_cast<float*>(alpha_copy.data());
 | ||
|   cv::Mat alpha(out_h, out_w, CV_32FC1, alpha_ptr);
 | ||
|   if (remove_small_connected_area) {
 | ||
|     alpha = RemoveSmallConnectedArea(alpha, 0.05f);
 | ||
|   }
 | ||
|   if ((out_h != height) || (out_w != width)) {
 | ||
|     cv::resize(alpha, alpha, cv::Size(width, height));
 | ||
|   }
 | ||
| 
 | ||
|   if ((vis_img).type() != CV_8UC3) {
 | ||
|     (vis_img).convertTo((vis_img), CV_8UC3);
 | ||
|   }
 | ||
| 
 | ||
|   uchar* vis_data = static_cast<uchar*>(vis_img.data);
 | ||
|   uchar* im_data = static_cast<uchar*>(im.data);
 | ||
|   float* alpha_data = reinterpret_cast<float*>(alpha.data);
 | ||
| 
 | ||
|   for (size_t i = 0; i < height; ++i) {
 | ||
|     for (size_t j = 0; j < width; ++j) {
 | ||
|       float alpha_val = alpha_data[i * width + j];
 | ||
|       vis_data[i * width * 3 + j * 3 + 0] = cv::saturate_cast<uchar>(
 | ||
|           static_cast<float>(im_data[i * width * 3 + j * 3 + 0]) * alpha_val +
 | ||
|           (1.f - alpha_val) * 153.f);
 | ||
|       vis_data[i * width * 3 + j * 3 + 1] = cv::saturate_cast<uchar>(
 | ||
|           static_cast<float>(im_data[i * width * 3 + j * 3 + 1]) * alpha_val +
 | ||
|           (1.f - alpha_val) * 255.f);
 | ||
|       vis_data[i * width * 3 + j * 3 + 2] = cv::saturate_cast<uchar>(
 | ||
|           static_cast<float>(im_data[i * width * 3 + j * 3 + 2]) * alpha_val +
 | ||
|           (1.f - alpha_val) * 120.f);
 | ||
|     }
 | ||
|   }
 | ||
|   return vis_img;
 | ||
| }
 | ||
| 
 | ||
| }  // namespace vision
 | ||
| }  // namespace fastdeploy
 | ||
| #endif
 | 
