mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 06908b8beb
			
		
	
	06908b8beb
	
	
	
		
			
			* add ppcls benchmark * add ppcls benchmark * add ppcls benchmark * add ppcls benchmark * fixed txt path * resolve conflict * resolve conflict * deal with comments * Add enable_trt_fp16 option * Add OV backend for seg and det * fixed valid backends in ppdet * fixed valid backends in yolo * add copyright and rm Chinese Notes * add ppdet&ppseg&yolo benchmark * add cpu/gpu mem info Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			241 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			241 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "fastdeploy/vision/segmentation/ppseg/model.h"
 | |
| #include "fastdeploy/vision.h"
 | |
| #include "fastdeploy/vision/utils/utils.h"
 | |
| #include "yaml-cpp/yaml.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace segmentation {
 | |
| 
 | |
| PaddleSegModel::PaddleSegModel(const std::string& model_file,
 | |
|                                const std::string& params_file,
 | |
|                                const std::string& config_file,
 | |
|                                const RuntimeOption& custom_option,
 | |
|                                const Frontend& model_format) {
 | |
|   config_file_ = config_file;
 | |
|   valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER};
 | |
|   valid_gpu_backends = {Backend::PDINFER, Backend::TRT};
 | |
|   runtime_option = custom_option;
 | |
|   runtime_option.model_format = model_format;
 | |
|   runtime_option.model_file = model_file;
 | |
|   runtime_option.params_file = params_file;
 | |
|   initialized = Initialize();
 | |
| }
 | |
| 
 | |
| bool PaddleSegModel::Initialize() {
 | |
|   if (!BuildPreprocessPipelineFromConfig()) {
 | |
|     FDERROR << "Failed to build preprocess pipeline from configuration file."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   if (!InitRuntime()) {
 | |
|     FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PaddleSegModel::BuildPreprocessPipelineFromConfig() {
 | |
|   processors_.clear();
 | |
|   YAML::Node cfg;
 | |
|   processors_.push_back(std::make_shared<BGR2RGB>());
 | |
|   try {
 | |
|     cfg = YAML::LoadFile(config_file_);
 | |
|   } catch (YAML::BadFile& e) {
 | |
|     FDERROR << "Failed to load yaml file " << config_file_
 | |
|             << ", maybe you should check this file." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (cfg["Deploy"]["transforms"]) {
 | |
|     auto preprocess_cfg = cfg["Deploy"]["transforms"];
 | |
|     for (const auto& op : preprocess_cfg) {
 | |
|       FDASSERT(op.IsMap(),
 | |
|                "Require the transform information in yaml be Map type.");
 | |
|       if (op["type"].as<std::string>() == "Normalize") {
 | |
|         std::vector<float> mean = {0.5, 0.5, 0.5};
 | |
|         std::vector<float> std = {0.5, 0.5, 0.5};
 | |
|         if (op["mean"]) {
 | |
|           mean = op["mean"].as<std::vector<float>>();
 | |
|         }
 | |
|         if (op["std"]) {
 | |
|           std = op["std"].as<std::vector<float>>();
 | |
|         }
 | |
|         processors_.push_back(std::make_shared<Normalize>(mean, std));
 | |
| 
 | |
|       } else if (op["type"].as<std::string>() == "Resize") {
 | |
|         const auto& target_size = op["target_size"];
 | |
|         int resize_width = target_size[0].as<int>();
 | |
|         int resize_height = target_size[1].as<int>();
 | |
|         is_resized = true;
 | |
|         processors_.push_back(
 | |
|             std::make_shared<Resize>(resize_width, resize_height));
 | |
|       } else {
 | |
|         std::string op_name = op["type"].as<std::string>();
 | |
|         FDERROR << "Unexcepted preprocess operator: " << op_name << "."
 | |
|                 << std::endl;
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     processors_.push_back(std::make_shared<HWC2CHW>());
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PaddleSegModel::Preprocess(
 | |
|     Mat* mat, FDTensor* output,
 | |
|     std::map<std::string, std::array<int, 2>>* im_info) {
 | |
|   for (size_t i = 0; i < processors_.size(); ++i) {
 | |
|     if (processors_[i]->Name().compare("Resize") == 0) {
 | |
|       auto processor = dynamic_cast<Resize*>(processors_[i].get());
 | |
|       int resize_width = -1;
 | |
|       int resize_height = -1;
 | |
|       std::tie(resize_width, resize_height) = processor->GetWidthAndHeight();
 | |
|       if (is_vertical_screen && (resize_width > resize_height)) {
 | |
|         if (processor->SetWidthAndHeight(resize_height, resize_width)) {
 | |
|           FDERROR << "Failed to set Resize processor width and height "
 | |
|                   << processors_[i]->Name() << "." << std::endl;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (!(*(processors_[i].get()))(mat)) {
 | |
|       FDERROR << "Failed to process image data in " << processors_[i]->Name()
 | |
|               << "." << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Record output shape of preprocessed image
 | |
|   (*im_info)["output_shape"] = {static_cast<int>(mat->Height()),
 | |
|                                 static_cast<int>(mat->Width())};
 | |
| 
 | |
|   mat->ShareWithTensor(output);
 | |
|   output->shape.insert(output->shape.begin(), 1);
 | |
|   output->name = InputInfoOfRuntime(0).name;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PaddleSegModel::Postprocess(
 | |
|     FDTensor& infer_result, SegmentationResult* result,
 | |
|     std::map<std::string, std::array<int, 2>>* im_info) {
 | |
|   // PaddleSeg has three types of inference output:
 | |
|   //     1. output with argmax and without softmax. 3-D matrix CHW, Channel
 | |
|   //     always 1, the element in matrix is classified label_id INT64 Type.
 | |
|   //     2. output without argmax and without softmax. 4-D matrix NCHW, N always
 | |
|   //     1, Channel is the num of classes. The element is the logits of classes
 | |
|   //     FP32
 | |
|   //     3. output without argmax and with softmax. 4-D matrix NCHW, the result
 | |
|   //     of 2 with softmax layer
 | |
|   // Fastdeploy output:
 | |
|   //     1. label_map
 | |
|   //     2. score_map(optional)
 | |
|   //     3. shape: 2-D HW
 | |
|   FDASSERT(infer_result.dtype == FDDataType::INT64 ||
 | |
|                infer_result.dtype == FDDataType::FP32,
 | |
|            "Require the data type of output is int64 or fp32, but now it's %s.",
 | |
|            Str(infer_result.dtype).c_str());
 | |
|   result->Clear();
 | |
| 
 | |
|   if (infer_result.shape.size() == 4) {
 | |
|     FDASSERT(infer_result.shape[0] == 1, "Only support batch size = 1.");
 | |
|     // output without argmax
 | |
|     result->contain_score_map = true;
 | |
|     utils::NCHW2NHWC<float_t>(infer_result);
 | |
|   }
 | |
| 
 | |
|   // for resize mat below
 | |
|   FDTensor new_infer_result;
 | |
|   Mat* mat = nullptr;
 | |
|   if (is_resized) {
 | |
|     cv::Mat temp_mat;
 | |
|     FDTensor2FP32CVMat(temp_mat, infer_result, result->contain_score_map);
 | |
| 
 | |
|     // original image shape
 | |
|     auto iter_ipt = (*im_info).find("input_shape");
 | |
|     FDASSERT(iter_ipt != im_info->end(),
 | |
|              "Cannot find input_shape from im_info.");
 | |
|     int ipt_h = iter_ipt->second[0];
 | |
|     int ipt_w = iter_ipt->second[1];
 | |
| 
 | |
|     mat = new Mat(temp_mat);
 | |
| 
 | |
|     Resize::Run(mat, ipt_w, ipt_h, -1, -1, 1);
 | |
|     mat->ShareWithTensor(&new_infer_result);
 | |
|     new_infer_result.shape.insert(new_infer_result.shape.begin(), 1);
 | |
|     result->shape = new_infer_result.shape;
 | |
|   } else {
 | |
|     result->shape = infer_result.shape;
 | |
|   }
 | |
|   int out_num =
 | |
|       std::accumulate(result->shape.begin(), result->shape.begin() + 3, 1,
 | |
|                       std::multiplies<int>());
 | |
|   // NCHW remove N or CHW remove C
 | |
|   result->shape.erase(result->shape.begin());
 | |
|   result->Resize(out_num);
 | |
|   if (result->contain_score_map) {
 | |
|     // output with label_map and score_map
 | |
|     float_t* infer_result_buffer = nullptr;
 | |
|     if (is_resized) {
 | |
|       infer_result_buffer = static_cast<float_t*>(new_infer_result.Data());
 | |
|     } else {
 | |
|       infer_result_buffer = static_cast<float_t*>(infer_result.Data());
 | |
|     }
 | |
|     // argmax
 | |
|     utils::ArgmaxScoreMap(infer_result_buffer, result, with_softmax);
 | |
|     result->shape.erase(result->shape.begin() + 2);
 | |
|   } else {
 | |
|     // output only with label_map
 | |
|     if (is_resized) {
 | |
|       float_t* infer_result_buffer =
 | |
|           static_cast<float_t*>(new_infer_result.Data());
 | |
|       for (int i = 0; i < out_num; i++) {
 | |
|         result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i));
 | |
|       }
 | |
|     } else {
 | |
|       const int64_t* infer_result_buffer =
 | |
|           reinterpret_cast<const int64_t*>(infer_result.Data());
 | |
|       for (int i = 0; i < out_num; i++) {
 | |
|         result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   delete mat;
 | |
|   mat = nullptr;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PaddleSegModel::Predict(cv::Mat* im, SegmentationResult* result) {
 | |
|   Mat mat(*im);
 | |
|   std::vector<FDTensor> processed_data(1);
 | |
| 
 | |
|   std::map<std::string, std::array<int, 2>> im_info;
 | |
| 
 | |
|   // Record the shape of image and the shape of preprocessed image
 | |
|   im_info["input_shape"] = {static_cast<int>(mat.Height()),
 | |
|                             static_cast<int>(mat.Width())};
 | |
|   im_info["output_shape"] = {static_cast<int>(mat.Height()),
 | |
|                              static_cast<int>(mat.Width())};
 | |
| 
 | |
|   if (!Preprocess(&mat, &(processed_data[0]), &im_info)) {
 | |
|     FDERROR << "Failed to preprocess input data while using model:"
 | |
|             << ModelName() << "." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   std::vector<FDTensor> infer_result(1);
 | |
|   if (!Infer(processed_data, &infer_result)) {
 | |
|     FDERROR << "Failed to inference while using model:" << ModelName() << "."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   if (!Postprocess(infer_result[0], result, &im_info)) {
 | |
|     FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace segmentation
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |