mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			248 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			248 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| #include "fastdeploy/vision/matting/ppmatting/ppmatting.h"
 | |
| #include "fastdeploy/vision.h"
 | |
| #include "fastdeploy/vision/utils/utils.h"
 | |
| #include "yaml-cpp/yaml.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace matting {
 | |
| 
 | |
| PPMatting::PPMatting(const std::string& model_file,
 | |
|                      const std::string& params_file,
 | |
|                      const std::string& config_file,
 | |
|                      const RuntimeOption& custom_option,
 | |
|                      const Frontend& model_format) {
 | |
|   config_file_ = config_file;
 | |
|   valid_cpu_backends = {Backend::ORT, Backend::PDINFER};
 | |
|   valid_gpu_backends = {Backend::PDINFER, Backend::TRT};
 | |
|   runtime_option = custom_option;
 | |
|   runtime_option.model_format = model_format;
 | |
|   runtime_option.model_file = model_file;
 | |
|   runtime_option.params_file = params_file;
 | |
|   initialized = Initialize();
 | |
| }
 | |
| 
 | |
| bool PPMatting::Initialize() {
 | |
|   if (!BuildPreprocessPipelineFromConfig()) {
 | |
|     FDERROR << "Failed to build preprocess pipeline from configuration file."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   if (!InitRuntime()) {
 | |
|     FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPMatting::BuildPreprocessPipelineFromConfig() {
 | |
|   processors_.clear();
 | |
|   YAML::Node cfg;
 | |
|   processors_.push_back(std::make_shared<BGR2RGB>());
 | |
|   try {
 | |
|     cfg = YAML::LoadFile(config_file_);
 | |
|   } catch (YAML::BadFile& e) {
 | |
|     FDERROR << "Failed to load yaml file " << config_file_
 | |
|             << ", maybe you should check this file." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (cfg["Deploy"]["transforms"]) {
 | |
|     auto preprocess_cfg = cfg["Deploy"]["transforms"];
 | |
|     for (const auto& op : preprocess_cfg) {
 | |
|       FDASSERT(op.IsMap(),
 | |
|                "Require the transform information in yaml be Map type.");
 | |
|       if (op["type"].as<std::string>() == "LimitShort") {
 | |
|         int max_short = -1;
 | |
|         int min_short = -1;
 | |
|         if (op["max_short"]) {
 | |
|           max_short = op["max_short"].as<int>();
 | |
|         }
 | |
|         if (op["min_short"]) {
 | |
|           min_short = op["min_short"].as<int>();
 | |
|         }
 | |
|         FDINFO << "Detected LimitShort processing step in yaml file, if the "
 | |
|                   "model is exported from PaddleSeg, please make sure the "
 | |
|                   "input of your model is fixed with a square shape, and "
 | |
|                   "greater than or equal to "
 | |
|                << max_short << "." << std::endl;
 | |
|         processors_.push_back(
 | |
|             std::make_shared<LimitShort>(max_short, min_short));
 | |
|       } else if (op["type"].as<std::string>() == "ResizeToIntMult") {
 | |
|         int mult_int = 32;
 | |
|         if (op["mult_int"]) {
 | |
|           mult_int = op["mult_int"].as<int>();
 | |
|         }
 | |
|         processors_.push_back(std::make_shared<ResizeToIntMult>(mult_int));
 | |
|       } else if (op["type"].as<std::string>() == "Normalize") {
 | |
|         std::vector<float> mean = {0.5, 0.5, 0.5};
 | |
|         std::vector<float> std = {0.5, 0.5, 0.5};
 | |
|         if (op["mean"]) {
 | |
|           mean = op["mean"].as<std::vector<float>>();
 | |
|         }
 | |
|         if (op["std"]) {
 | |
|           std = op["std"].as<std::vector<float>>();
 | |
|         }
 | |
|         processors_.push_back(std::make_shared<Normalize>(mean, std));
 | |
|       } else if (op["type"].as<std::string>() == "ResizeByLong") {
 | |
|         int target_size = op["long_size"].as<int>();
 | |
|         processors_.push_back(std::make_shared<ResizeByLong>(target_size));
 | |
|       } else if (op["type"].as<std::string>() == "Pad") {
 | |
|         // size: (w, h)
 | |
|         auto size = op["size"].as<std::vector<int>>();
 | |
|         std::vector<float> value = {127.5, 127.5, 127.5};
 | |
|         if (op["fill_value"]) {
 | |
|           auto value = op["fill_value"].as<std::vector<float>>();
 | |
|         }
 | |
|         processors_.push_back(std::make_shared<Cast>("float"));
 | |
|         processors_.push_back(
 | |
|             std::make_shared<PadToSize>(size[1], size[0], value));
 | |
|       } else if (op["type"].as<std::string>() == "ResizeByShort") {
 | |
|         int target_size = op["short_size"].as<int>();
 | |
|         processors_.push_back(std::make_shared<ResizeByShort>(target_size));
 | |
|       }
 | |
|     }
 | |
|     processors_.push_back(std::make_shared<HWC2CHW>());
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPMatting::Preprocess(Mat* mat, FDTensor* output,
 | |
|                            std::map<std::string, std::array<int, 2>>* im_info) {
 | |
|   for (size_t i = 0; i < processors_.size(); ++i) {
 | |
|     if (processors_[i]->Name().compare("LimitShort") == 0) {
 | |
|       int input_h = static_cast<int>(mat->Height());
 | |
|       int input_w = static_cast<int>(mat->Width());
 | |
|       auto processor = dynamic_cast<LimitShort*>(processors_[i].get());
 | |
|       int max_short = processor->GetMaxShort();
 | |
|       if (runtime_option.backend != Backend::PDINFER) {
 | |
|         if (input_w != input_h || input_h < max_short || input_w < max_short) {
 | |
|           Resize::Run(mat, max_short, max_short);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (!(*(processors_[i].get()))(mat)) {
 | |
|       FDERROR << "Failed to process image data in " << processors_[i]->Name()
 | |
|               << "." << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|     if (processors_[i]->Name().compare("ResizeByLong") == 0) {
 | |
|       (*im_info)["resize_by_long"] = {static_cast<int>(mat->Height()),
 | |
|                                       static_cast<int>(mat->Width())};
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Record output shape of preprocessed image
 | |
|   (*im_info)["output_shape"] = {static_cast<int>(mat->Height()),
 | |
|                                 static_cast<int>(mat->Width())};
 | |
| 
 | |
|   mat->ShareWithTensor(output);
 | |
|   output->shape.insert(output->shape.begin(), 1);
 | |
|   output->name = InputInfoOfRuntime(0).name;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPMatting::Postprocess(
 | |
|     std::vector<FDTensor>& infer_result, MattingResult* result,
 | |
|     const std::map<std::string, std::array<int, 2>>& im_info) {
 | |
|   FDASSERT((infer_result.size() == 1),
 | |
|            "The default number of output tensor must be 1 according to "
 | |
|            "modnet.");
 | |
|   FDTensor& alpha_tensor = infer_result.at(0);  // (1,h,w,1)
 | |
|   FDASSERT((alpha_tensor.shape[0] == 1), "Only support batch =1 now.");
 | |
|   if (alpha_tensor.dtype != FDDataType::FP32) {
 | |
|     FDERROR << "Only support post process with float32 data." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // 先获取alpha并resize (使用opencv)
 | |
|   auto iter_ipt = im_info.find("input_shape");
 | |
|   auto iter_out = im_info.find("output_shape");
 | |
|   auto resize_by_long = im_info.find("resize_by_long");
 | |
|   FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
 | |
|            "Cannot find input_shape or output_shape from im_info.");
 | |
|   int out_h = iter_out->second[0];
 | |
|   int out_w = iter_out->second[1];
 | |
|   int ipt_h = iter_ipt->second[0];
 | |
|   int ipt_w = iter_ipt->second[1];
 | |
| 
 | |
|   // TODO: 需要修改成FDTensor或Mat的运算 现在依赖cv::Mat
 | |
|   float* alpha_ptr = static_cast<float*>(alpha_tensor.Data());
 | |
|   cv::Mat alpha_zero_copy_ref(out_h, out_w, CV_32FC1, alpha_ptr);
 | |
|   cv::Mat cropped_alpha;
 | |
|   if (resize_by_long != im_info.end()) {
 | |
|     int resize_h = resize_by_long->second[0];
 | |
|     int resize_w = resize_by_long->second[1];
 | |
|     alpha_zero_copy_ref(cv::Rect(0, 0, resize_w, resize_h))
 | |
|         .copyTo(cropped_alpha);
 | |
|   } else {
 | |
|     cropped_alpha = alpha_zero_copy_ref;
 | |
|   }
 | |
|   Mat alpha_resized(cropped_alpha);  // ref-only, zero copy.
 | |
| 
 | |
|   if ((out_h != ipt_h) || (out_w != ipt_w)) {
 | |
|     // already allocated a new continuous memory after resize.
 | |
|     // cv::resize(alpha_resized, alpha_resized, cv::Size(ipt_w, ipt_h));
 | |
|     Resize::Run(&alpha_resized, ipt_w, ipt_h, -1, -1);
 | |
|   }
 | |
| 
 | |
|   result->Clear();
 | |
|   // note: must be setup shape before Resize
 | |
|   result->contain_foreground = false;
 | |
|   // 和输入原图大小对应的alpha
 | |
|   result->shape = {static_cast<int64_t>(ipt_h), static_cast<int64_t>(ipt_w)};
 | |
|   int numel = ipt_h * ipt_w;
 | |
|   int nbytes = numel * sizeof(float);
 | |
|   result->Resize(numel);
 | |
|   std::memcpy(result->alpha.data(), alpha_resized.GetCpuMat()->data, nbytes);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PPMatting::Predict(cv::Mat* im, MattingResult* result) {
 | |
|   Mat mat(*im);
 | |
|   std::vector<FDTensor> processed_data(1);
 | |
| 
 | |
|   std::map<std::string, std::array<int, 2>> im_info;
 | |
| 
 | |
|   // Record the shape of image and the shape of preprocessed image
 | |
|   im_info["input_shape"] = {static_cast<int>(mat.Height()),
 | |
|                             static_cast<int>(mat.Width())};
 | |
|   im_info["output_shape"] = {static_cast<int>(mat.Height()),
 | |
|                              static_cast<int>(mat.Width())};
 | |
| 
 | |
|   if (!Preprocess(&mat, &(processed_data[0]), &im_info)) {
 | |
|     FDERROR << "Failed to preprocess input data while using model:"
 | |
|             << ModelName() << "." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   std::vector<FDTensor> infer_result(1);
 | |
|   if (!Infer(processed_data, &infer_result)) {
 | |
|     FDERROR << "Failed to inference while using model:" << ModelName() << "."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   if (!Postprocess(infer_result, result, im_info)) {
 | |
|     FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
 | |
|             << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace matting
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 | 
