mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			369 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			369 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/facedet/contrib/scrfd.h"
 | |
| #include "fastdeploy/utils/perf.h"
 | |
| #include "fastdeploy/vision/utils/utils.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| 
 | |
| namespace vision {
 | |
| 
 | |
| namespace facedet {
 | |
| 
 | |
| void SCRFD::LetterBox(Mat* mat, const std::vector<int>& size,
 | |
|                       const std::vector<float>& color, bool _auto,
 | |
|                       bool scale_fill, bool scale_up, int stride) {
 | |
|   float scale =
 | |
|       std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width());
 | |
|   if (!scale_up) {
 | |
|     scale = std::min(scale, 1.0f);
 | |
|   }
 | |
| 
 | |
|   int resize_h = int(round(mat->Height() * scale));
 | |
|   int resize_w = int(round(mat->Width() * scale));
 | |
| 
 | |
|   int pad_w = size[0] - resize_w;
 | |
|   int pad_h = size[1] - resize_h;
 | |
|   if (_auto) {
 | |
|     pad_h = pad_h % stride;
 | |
|     pad_w = pad_w % stride;
 | |
|   } else if (scale_fill) {
 | |
|     pad_h = 0;
 | |
|     pad_w = 0;
 | |
|     resize_h = size[1];
 | |
|     resize_w = size[0];
 | |
|   }
 | |
|   if (resize_h != mat->Height() || resize_w != mat->Width()) {
 | |
|     Resize::Run(mat, resize_w, resize_h);
 | |
|   }
 | |
|   if (pad_h > 0 || pad_w > 0) {
 | |
|     float half_h = pad_h * 1.0 / 2;
 | |
|     int top = int(round(half_h - 0.1));
 | |
|     int bottom = int(round(half_h + 0.1));
 | |
|     float half_w = pad_w * 1.0 / 2;
 | |
|     int left = int(round(half_w - 0.1));
 | |
|     int right = int(round(half_w + 0.1));
 | |
|     Pad::Run(mat, top, bottom, left, right, color);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SCRFD::SCRFD(const std::string& model_file, const std::string& params_file,
 | |
|              const RuntimeOption& custom_option, const Frontend& model_format) {
 | |
|   if (model_format == Frontend::ONNX) {
 | |
|     valid_cpu_backends = {Backend::ORT};  // 指定可用的CPU后端
 | |
|     valid_gpu_backends = {Backend::ORT, Backend::TRT};  // 指定可用的GPU后端
 | |
|   } else {
 | |
|     valid_cpu_backends = {Backend::PDINFER, Backend::ORT};
 | |
|     valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
 | |
|   }
 | |
|   runtime_option = custom_option;
 | |
|   runtime_option.model_format = model_format;
 | |
|   runtime_option.model_file = model_file;
 | |
|   runtime_option.params_file = params_file;
 | |
|   initialized = Initialize();
 | |
| }
 | |
| 
 | |
| bool SCRFD::Initialize() {
 | |
|   // parameters for preprocess
 | |
|   use_kps = true;
 | |
|   size = {640, 640};
 | |
|   padding_value = {0.0, 0.0, 0.0};
 | |
|   is_mini_pad = false;
 | |
|   is_no_pad = false;
 | |
|   is_scale_up = false;
 | |
|   stride = 32;
 | |
|   downsample_strides = {8, 16, 32};
 | |
|   num_anchors = 2;
 | |
|   landmarks_per_face = 5;
 | |
|   center_points_is_update_ = false;
 | |
|   max_nms = 30000;
 | |
|   // num_outputs = use_kps ? 9 : 6;
 | |
|   if (!InitRuntime()) {
 | |
|     FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
|   // Check if the input shape is dynamic after Runtime already initialized,
 | |
|   // Note that, We need to force is_mini_pad 'false' to keep static
 | |
|   // shape after padding (LetterBox) when the is_dynamic_shape is 'false'.
 | |
|   is_dynamic_input_ = false;
 | |
|   auto shape = InputInfoOfRuntime(0).shape;
 | |
|   for (int i = 0; i < shape.size(); ++i) {
 | |
|     // if height or width is dynamic
 | |
|     if (i >= 2 && shape[i] <= 0) {
 | |
|       is_dynamic_input_ = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!is_dynamic_input_) {
 | |
|     is_mini_pad = false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SCRFD::Preprocess(Mat* mat, FDTensor* output,
 | |
|                        std::map<std::string, std::array<float, 2>>* im_info) {
 | |
|   float ratio = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
 | |
|                          size[0] * 1.0f / static_cast<float>(mat->Width()));
 | |
|   if (ratio != 1.0) {
 | |
|     int interp = cv::INTER_AREA;
 | |
|     if (ratio > 1.0) {
 | |
|       interp = cv::INTER_LINEAR;
 | |
|     }
 | |
|     int resize_h = int(mat->Height() * ratio);
 | |
|     int resize_w = int(mat->Width() * ratio);
 | |
|     Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
 | |
|   }
 | |
|   // scrfd's preprocess steps
 | |
|   // 1. letterbox
 | |
|   // 2. BGR->RGB
 | |
|   // 3. HWC->CHW
 | |
|   SCRFD::LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad,
 | |
|                    is_scale_up, stride);
 | |
| 
 | |
|   BGR2RGB::Run(mat);
 | |
|   // Normalize::Run(mat, std::vector<float>(mat->Channels(), 0.0),
 | |
|   //                std::vector<float>(mat->Channels(), 1.0));
 | |
|   // Compute `result = mat * alpha + beta` directly by channel
 | |
|   // Original Repo/tools/scrfd.py: cv2.dnn.blobFromImage(img, 1.0/128,
 | |
|   // input_size, (127.5, 127.5, 127.5), swapRB=True)
 | |
|   std::vector<float> alpha = {1.f / 128.f, 1.f / 128.f, 1.f / 128.f};
 | |
|   std::vector<float> beta = {-127.5f / 128.f, -127.5f / 128.f, -127.5f / 128.f};
 | |
|   Convert::Run(mat, alpha, beta);
 | |
|   // Record output shape of preprocessed image
 | |
|   (*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
 | |
|                                 static_cast<float>(mat->Width())};
 | |
|   HWC2CHW::Run(mat);
 | |
|   Cast::Run(mat, "float");
 | |
|   mat->ShareWithTensor(output);
 | |
|   output->shape.insert(output->shape.begin(), 1);  // reshape to n, h, w, c
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void SCRFD::GeneratePoints() {
 | |
|   if (center_points_is_update_ && !is_dynamic_input_) {
 | |
|     return;
 | |
|   }
 | |
|   // 8, 16, 32
 | |
|   for (auto local_stride : downsample_strides) {
 | |
|     unsigned int num_grid_w = size[0] / local_stride;
 | |
|     unsigned int num_grid_h = size[1] / local_stride;
 | |
|     // y
 | |
|     for (unsigned int i = 0; i < num_grid_h; ++i) {
 | |
|       // x
 | |
|       for (unsigned int j = 0; j < num_grid_w; ++j) {
 | |
|         // num_anchors, col major
 | |
|         for (unsigned int k = 0; k < num_anchors; ++k) {
 | |
|           SCRFDPoint point;
 | |
|           point.cx = static_cast<float>(j);
 | |
|           point.cy = static_cast<float>(i);
 | |
|           center_points_[local_stride].push_back(point);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   center_points_is_update_ = true;
 | |
| }
 | |
| 
 | |
| bool SCRFD::Postprocess(
 | |
|     std::vector<FDTensor>& infer_result, FaceDetectionResult* result,
 | |
|     const std::map<std::string, std::array<float, 2>>& im_info,
 | |
|     float conf_threshold, float nms_iou_threshold) {
 | |
|   // number of downsample_strides
 | |
|   int fmc = downsample_strides.size();
 | |
|   // scrfd has 6,9,10,15 output tensors
 | |
|   FDASSERT((infer_result.size() == 9 || infer_result.size() == 6 ||
 | |
|             infer_result.size() == 10 || infer_result.size() == 15),
 | |
|            "The default number of output tensor must be 6, 9, 10, or 15 "
 | |
|            "according to scrfd.");
 | |
|   FDASSERT((fmc == 3 || fmc == 5), "The fmc must be 3 or 5");
 | |
|   FDASSERT((infer_result.at(0).shape[0] == 1), "Only support batch =1 now.");
 | |
|   for (int i = 0; i < fmc; ++i) {
 | |
|     if (infer_result.at(i).dtype != FDDataType::FP32) {
 | |
|       FDERROR << "Only support post process with float32 data." << std::endl;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   int total_num_boxes = 0;
 | |
|   // compute the reserve space.
 | |
|   for (int f = 0; f < fmc; ++f) {
 | |
|     total_num_boxes += infer_result.at(f).shape[1];
 | |
|   };
 | |
|   GeneratePoints();
 | |
|   result->Clear();
 | |
|   // scale the boxes to the origin image shape
 | |
|   auto iter_out = im_info.find("output_shape");
 | |
|   auto iter_ipt = im_info.find("input_shape");
 | |
|   FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
 | |
|            "Cannot find input_shape or output_shape from im_info.");
 | |
|   float out_h = iter_out->second[0];
 | |
|   float out_w = iter_out->second[1];
 | |
|   float ipt_h = iter_ipt->second[0];
 | |
|   float ipt_w = iter_ipt->second[1];
 | |
|   float scale = std::min(out_h / ipt_h, out_w / ipt_w);
 | |
|   float pad_h = (out_h - ipt_h * scale) / 2.0f;
 | |
|   float pad_w = (out_w - ipt_w * scale) / 2.0f;
 | |
|   if (is_mini_pad) {
 | |
|     // 和 LetterBox中_auto=true的处理逻辑对应
 | |
|     pad_h = static_cast<float>(static_cast<int>(pad_h) % stride);
 | |
|     pad_w = static_cast<float>(static_cast<int>(pad_w) % stride);
 | |
|   }
 | |
|   // must be setup landmarks_per_face before reserve
 | |
|   result->landmarks_per_face = landmarks_per_face;
 | |
|   result->Reserve(total_num_boxes);
 | |
|   unsigned int count = 0;
 | |
|   // loop each stride
 | |
|   for (int f = 0; f < fmc; ++f) {
 | |
|     float* score_ptr = static_cast<float*>(infer_result.at(f).Data());
 | |
|     float* bbox_ptr = static_cast<float*>(infer_result.at(f + fmc).Data());
 | |
|     const unsigned int num_points = infer_result.at(f).shape[1];
 | |
|     int current_stride = downsample_strides[f];
 | |
|     auto& stride_points = center_points_[current_stride];
 | |
|     // loop each anchor
 | |
|     for (unsigned int i = 0; i < num_points; ++i) {
 | |
|       const float cls_conf = score_ptr[i];
 | |
|       if (cls_conf < conf_threshold) continue;  // filter
 | |
|       auto& point = stride_points.at(i);
 | |
|       const float cx = point.cx;  // cx
 | |
|       const float cy = point.cy;  // cy
 | |
|       // bbox
 | |
|       const float* offsets = bbox_ptr + i * 4;
 | |
|       float l = offsets[0];  // left
 | |
|       float t = offsets[1];  // top
 | |
|       float r = offsets[2];  // right
 | |
|       float b = offsets[3];  // bottom
 | |
| 
 | |
|       float x1 = ((cx - l) * static_cast<float>(current_stride) -
 | |
|                   static_cast<float>(pad_w)) /
 | |
|                  scale;  // cx - l x1
 | |
|       float y1 = ((cy - t) * static_cast<float>(current_stride) -
 | |
|                   static_cast<float>(pad_h)) /
 | |
|                  scale;  // cy - t y1
 | |
|       float x2 = ((cx + r) * static_cast<float>(current_stride) -
 | |
|                   static_cast<float>(pad_w)) /
 | |
|                  scale;  // cx + r x2
 | |
|       float y2 = ((cy + b) * static_cast<float>(current_stride) -
 | |
|                   static_cast<float>(pad_h)) /
 | |
|                  scale;  // cy + b y2
 | |
|       result->boxes.emplace_back(std::array<float, 4>{x1, y1, x2, y2});
 | |
|       result->scores.push_back(cls_conf);
 | |
|       if (use_kps) {
 | |
|         float* landmarks_ptr =
 | |
|             static_cast<float*>(infer_result.at(f + 2 * fmc).Data());
 | |
|         // landmarks
 | |
|         const float* kps_offsets = landmarks_ptr + i * (landmarks_per_face * 2);
 | |
|         for (unsigned int j = 0; j < landmarks_per_face * 2; j += 2) {
 | |
|           float kps_l = kps_offsets[j];
 | |
|           float kps_t = kps_offsets[j + 1];
 | |
|           float kps_x = ((cx + kps_l) * static_cast<float>(current_stride) -
 | |
|                          static_cast<float>(pad_w)) /
 | |
|                         scale;  // cx + l x
 | |
|           float kps_y = ((cy + kps_t) * static_cast<float>(current_stride) -
 | |
|                          static_cast<float>(pad_h)) /
 | |
|                         scale;  // cy + t y
 | |
|           result->landmarks.emplace_back(std::array<float, 2>{kps_x, kps_y});
 | |
|         }
 | |
|       }
 | |
|       count += 1;  // limit boxes for nms.
 | |
|       if (count > max_nms) {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // fetch original image shape
 | |
|   FDASSERT((iter_ipt != im_info.end()),
 | |
|            "Cannot find input_shape from im_info.");
 | |
| 
 | |
|   if (result->boxes.size() == 0) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   utils::NMS(result, nms_iou_threshold);
 | |
| 
 | |
|   // scale and clip box
 | |
|   for (size_t i = 0; i < result->boxes.size(); ++i) {
 | |
|     result->boxes[i][0] = std::max(result->boxes[i][0], 0.0f);
 | |
|     result->boxes[i][1] = std::max(result->boxes[i][1], 0.0f);
 | |
|     result->boxes[i][2] = std::max(result->boxes[i][2], 0.0f);
 | |
|     result->boxes[i][3] = std::max(result->boxes[i][3], 0.0f);
 | |
|     result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
 | |
|     result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
 | |
|     result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
 | |
|     result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
 | |
|   }
 | |
|   // scale and clip landmarks
 | |
|   for (size_t i = 0; i < result->landmarks.size(); ++i) {
 | |
|     result->landmarks[i][0] = std::max(result->landmarks[i][0], 0.0f);
 | |
|     result->landmarks[i][1] = std::max(result->landmarks[i][1], 0.0f);
 | |
|     result->landmarks[i][0] = std::min(result->landmarks[i][0], ipt_w - 1.0f);
 | |
|     result->landmarks[i][1] = std::min(result->landmarks[i][1], ipt_h - 1.0f);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SCRFD::Predict(cv::Mat* im, FaceDetectionResult* result,
 | |
|                     float conf_threshold, float nms_iou_threshold) {
 | |
| #ifdef FASTDEPLOY_DEBUG
 | |
|   TIMERECORD_START(0)
 | |
| #endif
 | |
|   Mat mat(*im);
 | |
|   std::vector<FDTensor> input_tensors(1);
 | |
| 
 | |
|   std::map<std::string, std::array<float, 2>> im_info;
 | |
| 
 | |
|   // Record the shape of image and the shape of preprocessed image
 | |
|   im_info["input_shape"] = {static_cast<float>(mat.Height()),
 | |
|                             static_cast<float>(mat.Width())};
 | |
|   im_info["output_shape"] = {static_cast<float>(mat.Height()),
 | |
|                              static_cast<float>(mat.Width())};
 | |
| 
 | |
|   if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
 | |
|     FDERROR << "Failed to preprocess input image." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| #ifdef FASTDEPLOY_DEBUG
 | |
|   TIMERECORD_END(0, "Preprocess")
 | |
|   TIMERECORD_START(1)
 | |
| #endif
 | |
| 
 | |
|   input_tensors[0].name = InputInfoOfRuntime(0).name;
 | |
|   std::vector<FDTensor> output_tensors;
 | |
|   if (!Infer(input_tensors, &output_tensors)) {
 | |
|     FDERROR << "Failed to inference." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| #ifdef FASTDEPLOY_DEBUG
 | |
|   TIMERECORD_END(1, "Inference")
 | |
|   TIMERECORD_START(2)
 | |
| #endif
 | |
| 
 | |
|   if (!Postprocess(output_tensors, result, im_info, conf_threshold,
 | |
|                    nms_iou_threshold)) {
 | |
|     FDERROR << "Failed to post process." << std::endl;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| #ifdef FASTDEPLOY_DEBUG
 | |
|   TIMERECORD_END(2, "Postprocess")
 | |
| #endif
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| }  // namespace facedet
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 | 
