mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			93 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			93 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | ||
| //
 | ||
| // Licensed under the Apache License, Version 2.0 (the "License");
 | ||
| // you may not use this file except in compliance with the License.
 | ||
| // You may obtain a copy of the License at
 | ||
| //
 | ||
| //     http://www.apache.org/licenses/LICENSE-2.0
 | ||
| //
 | ||
| // Unless required by applicable law or agreed to in writing, software
 | ||
| // distributed under the License is distributed on an "AS IS" BASIS,
 | ||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | ||
| // See the License for the specific language governing permissions and
 | ||
| // limitations under the License.
 | ||
| 
 | ||
| #pragma once
 | ||
| #include "fastdeploy/fastdeploy_model.h"
 | ||
| #include "fastdeploy/vision/common/processors/transform.h"
 | ||
| #include "fastdeploy/vision/common/result.h"
 | ||
| 
 | ||
| namespace fastdeploy {
 | ||
| 
 | ||
| namespace vision {
 | ||
| 
 | ||
| namespace facedet {
 | ||
| 
 | ||
| class FASTDEPLOY_DECL RetinaFace : public FastDeployModel {
 | ||
|  public:
 | ||
|   // 当model_format为ONNX时,无需指定params_file
 | ||
|   // 当model_format为Paddle时,则需同时指定model_file & params_file
 | ||
|   RetinaFace(const std::string& model_file, const std::string& params_file = "",
 | ||
|              const RuntimeOption& custom_option = RuntimeOption(),
 | ||
|              const Frontend& model_format = Frontend::ONNX);
 | ||
| 
 | ||
|   // 定义模型的名称
 | ||
|   std::string ModelName() const { return "Pytorch_Retinaface"; }
 | ||
| 
 | ||
|   // 模型预测接口,即用户调用的接口
 | ||
|   // im 为用户的输入数据,目前对于CV均定义为cv::Mat
 | ||
|   // result 为模型预测的输出结构体
 | ||
|   // conf_threshold 为后处理的参数
 | ||
|   // nms_iou_threshold 为后处理的参数
 | ||
|   virtual bool Predict(cv::Mat* im, FaceDetectionResult* result,
 | ||
|                        float conf_threshold = 0.25f,
 | ||
|                        float nms_iou_threshold = 0.4f);
 | ||
| 
 | ||
|   // 以下为模型在预测时的一些参数,基本是前后处理所需
 | ||
|   // 用户在创建模型后,可根据模型的要求,以及自己的需求
 | ||
|   // 对参数进行修改
 | ||
|   // tuple of (width, height), default (640, 640)
 | ||
|   std::vector<int> size;
 | ||
|   // variance in RetinaFace's prior-box(anchor) generate process,
 | ||
|   // default (0.1, 0.2)
 | ||
|   std::vector<float> variance;
 | ||
|   // downsample strides (namely, steps) for RetinaFace to
 | ||
|   // generate anchors, will take (8,16,32) as default values.
 | ||
|   std::vector<int> downsample_strides;
 | ||
|   // min sizes, width and height for each anchor.
 | ||
|   std::vector<std::vector<int>> min_sizes;
 | ||
|   // landmarks_per_face, default 5 in RetinaFace
 | ||
|   int landmarks_per_face;
 | ||
| 
 | ||
|  private:
 | ||
|   // 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作
 | ||
|   bool Initialize();
 | ||
| 
 | ||
|   // 输入图像预处理操作
 | ||
|   // Mat为FastDeploy定义的数据结构
 | ||
|   // FDTensor为预处理后的Tensor数据,传给后端进行推理
 | ||
|   // im_info为预处理过程保存的数据,在后处理中需要用到
 | ||
|   bool Preprocess(Mat* mat, FDTensor* output,
 | ||
|                   std::map<std::string, std::array<float, 2>>* im_info);
 | ||
| 
 | ||
|   // 后端推理结果后处理,输出给用户
 | ||
|   // infer_result 为后端推理后的输出Tensor
 | ||
|   // result 为模型预测的结果
 | ||
|   // im_info 为预处理记录的信息,后处理用于还原box
 | ||
|   // conf_threshold 后处理时过滤box的置信度阈值
 | ||
|   // nms_iou_threshold 后处理时NMS设定的iou阈值
 | ||
|   bool Postprocess(std::vector<FDTensor>& infer_result,
 | ||
|                    FaceDetectionResult* result,
 | ||
|                    const std::map<std::string, std::array<float, 2>>& im_info,
 | ||
|                    float conf_threshold, float nms_iou_threshold);
 | ||
| 
 | ||
|   // 查看输入是否为动态维度的 不建议直接使用 不同模型的逻辑可能不一致
 | ||
|   bool IsDynamicInput() const { return is_dynamic_input_; }
 | ||
| 
 | ||
|   bool is_dynamic_input_;
 | ||
| };
 | ||
| 
 | ||
| }  // namespace facedet
 | ||
| }  // namespace vision
 | ||
| }  // namespace fastdeploy
 | 
