mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
103 lines
4.2 KiB
C++
103 lines
4.2 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#pragma once
|
||
#include "fastdeploy/fastdeploy_model.h"
|
||
#include "fastdeploy/vision/common/processors/transform.h"
|
||
#include "fastdeploy/vision/common/result.h"
|
||
|
||
namespace fastdeploy {
|
||
namespace vision {
|
||
namespace detection {
|
||
|
||
class FASTDEPLOY_DECL YOLOR : public FastDeployModel {
|
||
public:
|
||
// 当model_format为ONNX时,无需指定params_file
|
||
// 当model_format为Paddle时,则需同时指定model_file & params_file
|
||
YOLOR(const std::string& model_file, const std::string& params_file = "",
|
||
const RuntimeOption& custom_option = RuntimeOption(),
|
||
const Frontend& model_format = Frontend::ONNX);
|
||
|
||
// 定义模型的名称
|
||
virtual std::string ModelName() const { return "YOLOR"; }
|
||
|
||
// 模型预测接口,即用户调用的接口
|
||
// im 为用户的输入数据,目前对于CV均定义为cv::Mat
|
||
// result 为模型预测的输出结构体
|
||
// conf_threshold 为后处理的参数
|
||
// nms_iou_threshold 为后处理的参数
|
||
virtual bool Predict(cv::Mat* im, DetectionResult* result,
|
||
float conf_threshold = 0.25,
|
||
float nms_iou_threshold = 0.5);
|
||
|
||
// 以下为模型在预测时的一些参数,基本是前后处理所需
|
||
// 用户在创建模型后,可根据模型的要求,以及自己的需求
|
||
// 对参数进行修改
|
||
// tuple of (width, height)
|
||
std::vector<int> size;
|
||
// padding value, size should be same with Channels
|
||
std::vector<float> padding_value;
|
||
// only pad to the minimum rectange which height and width is times of stride
|
||
bool is_mini_pad;
|
||
// while is_mini_pad = false and is_no_pad = true, will resize the image to
|
||
// the set size
|
||
bool is_no_pad;
|
||
// if is_scale_up is false, the input image only can be zoom out, the maximum
|
||
// resize scale cannot exceed 1.0
|
||
bool is_scale_up;
|
||
// padding stride, for is_mini_pad
|
||
int stride;
|
||
// for offseting the boxes by classes when using NMS
|
||
float max_wh;
|
||
|
||
private:
|
||
// 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作
|
||
bool Initialize();
|
||
|
||
// 输入图像预处理操作
|
||
// Mat为FastDeploy定义的数据结构
|
||
// FDTensor为预处理后的Tensor数据,传给后端进行推理
|
||
// im_info为预处理过程保存的数据,在后处理中需要用到
|
||
bool Preprocess(Mat* mat, FDTensor* output,
|
||
std::map<std::string, std::array<float, 2>>* im_info);
|
||
|
||
// 后端推理结果后处理,输出给用户
|
||
// infer_result 为后端推理后的输出Tensor
|
||
// result 为模型预测的结果
|
||
// im_info 为预处理记录的信息,后处理用于还原box
|
||
// conf_threshold 后处理时过滤box的置信度阈值
|
||
// nms_iou_threshold 后处理时NMS设定的iou阈值
|
||
bool Postprocess(FDTensor& infer_result, DetectionResult* result,
|
||
const std::map<std::string, std::array<float, 2>>& im_info,
|
||
float conf_threshold, float nms_iou_threshold);
|
||
|
||
// 对图片进行LetterBox处理
|
||
// mat 为读取到的原图
|
||
// size 为输入模型的图像尺寸
|
||
void LetterBox(Mat* mat, const std::vector<int>& size,
|
||
const std::vector<float>& color, bool _auto,
|
||
bool scale_fill = false, bool scale_up = true,
|
||
int stride = 32);
|
||
|
||
// whether to inference with dynamic shape (e.g ONNX export with dynamic shape
|
||
// or not.)
|
||
// while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This
|
||
// value will
|
||
// auto check by fastdeploy after the internal Runtime already initialized.
|
||
bool is_dynamic_input_;
|
||
};
|
||
} // namespace detection
|
||
} // namespace vision
|
||
} // namespace fastdeploy
|