mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			89 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/common/processors/normalize.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| Normalize::Normalize(const std::vector<float>& mean,
 | |
|                      const std::vector<float>& std, bool is_scale,
 | |
|                      const std::vector<float>& min,
 | |
|                      const std::vector<float>& max) {
 | |
|   FDASSERT(mean.size() == std.size(),
 | |
|            "Normalize: requires the size of mean equal to the size of std.");
 | |
|   std::vector<double> mean_(mean.begin(), mean.end());
 | |
|   std::vector<double> std_(std.begin(), std.end());
 | |
|   std::vector<double> min_(mean.size(), 0.0);
 | |
|   std::vector<double> max_(mean.size(), 255.0);
 | |
|   if (min.size() != 0) {
 | |
|     FDASSERT(
 | |
|         min.size() == mean.size(),
 | |
|         "Normalize: while min is defined, requires the size of min equal to "
 | |
|         "the size of mean.");
 | |
|     min_.assign(min.begin(), min.end());
 | |
|   }
 | |
|   if (max.size() != 0) {
 | |
|     FDASSERT(
 | |
|         min.size() == mean.size(),
 | |
|         "Normalize: while max is defined, requires the size of max equal to "
 | |
|         "the size of mean.");
 | |
|     max_.assign(max.begin(), max.end());
 | |
|   }
 | |
|   for (auto c = 0; c < mean_.size(); ++c) {
 | |
|     double alpha = 1.0;
 | |
|     if (is_scale) {
 | |
|       alpha /= (max_[c] - min_[c]);
 | |
|     }
 | |
|     double beta = -1.0 * (mean_[c] + min_[c] * alpha) / std_[c];
 | |
|     alpha /= std_[c];
 | |
|     alpha_.push_back(alpha);
 | |
|     beta_.push_back(beta);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Normalize::CpuRun(Mat* mat) {
 | |
|   cv::Mat* im = mat->GetCpuMat();
 | |
|   std::vector<cv::Mat> split_im;
 | |
|   cv::split(*im, split_im);
 | |
|   for (int c = 0; c < im->channels(); c++) {
 | |
|     split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]);
 | |
|   }
 | |
|   cv::merge(split_im, *im);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| #ifdef ENABLE_OPENCV_CUDA
 | |
| bool Normalize::GpuRun(Mat* mat) {
 | |
|   cv::cuda::GpuMat* im = mat->GetGpuMat();
 | |
|   std::vector<cv::cuda::GpuMat> split_im;
 | |
|   cv::cuda::split(*im, split_im);
 | |
|   for (int c = 0; c < im->channels(); c++) {
 | |
|     split_im[c].convertTo(split_im[c], CV_32FC1, alpha_[c], beta_[c]);
 | |
|   }
 | |
|   cv::cuda::merge(split_im, *im);
 | |
|   return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool Normalize::Run(Mat* mat, const std::vector<float>& mean,
 | |
|                     const std::vector<float>& std, bool is_scale,
 | |
|                     const std::vector<float>& min,
 | |
|                     const std::vector<float>& max, ProcLib lib) {
 | |
|   auto n = Normalize(mean, std, is_scale, min, max);
 | |
|   return n(mat, lib);
 | |
| }
 | |
| 
 | |
| } // namespace vision
 | |
| } // namespace fastdeploy
 | 
