Files
FastDeploy/fastdeploy/vision/classification/ppcls/model.cc
Jason addce837bc Add paddlelite backend support (#260)
* Add paddlelite backend support

* Update CMakeLists.txt

* Update __init__.py
2022-09-21 13:22:34 +08:00

156 lines
5.6 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/classification/ppcls/model.h"
#include "fastdeploy/vision/utils/utils.h"
#include "yaml-cpp/yaml.h"
namespace fastdeploy {
namespace vision {
namespace classification {
PaddleClasModel::PaddleClasModel(const std::string& model_file,
const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option,
const Frontend& model_format) {
config_file_ = config_file;
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO, Backend::PDINFER, Backend::LITE};
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool PaddleClasModel::Initialize() {
if (!BuildPreprocessPipelineFromConfig()) {
FDERROR << "Failed to build preprocess pipeline from configuration file."
<< std::endl;
return false;
}
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool PaddleClasModel::BuildPreprocessPipelineFromConfig() {
processors_.clear();
YAML::Node cfg;
try {
cfg = YAML::LoadFile(config_file_);
} catch (YAML::BadFile& e) {
FDERROR << "Failed to load yaml file " << config_file_
<< ", maybe you should check this file." << std::endl;
return false;
}
auto preprocess_cfg = cfg["PreProcess"]["transform_ops"];
processors_.push_back(std::make_shared<BGR2RGB>());
for (const auto& op : preprocess_cfg) {
FDASSERT(op.IsMap(),
"Require the transform information in yaml be Map type.");
auto op_name = op.begin()->first.as<std::string>();
if (op_name == "ResizeImage") {
int target_size = op.begin()->second["resize_short"].as<int>();
bool use_scale = false;
int interp = 1;
processors_.push_back(
std::make_shared<ResizeByShort>(target_size, 1, use_scale));
} else if (op_name == "CropImage") {
int width = op.begin()->second["size"].as<int>();
int height = op.begin()->second["size"].as<int>();
processors_.push_back(std::make_shared<CenterCrop>(width, height));
} else if (op_name == "NormalizeImage") {
auto mean = op.begin()->second["mean"].as<std::vector<float>>();
auto std = op.begin()->second["std"].as<std::vector<float>>();
auto scale = op.begin()->second["scale"].as<float>();
FDASSERT((scale - 0.00392157) < 1e-06 && (scale - 0.00392157) > -1e-06,
"Only support scale in Normalize be 0.00392157, means the pixel "
"is in range of [0, 255].");
processors_.push_back(std::make_shared<Normalize>(mean, std));
} else if (op_name == "ToCHWImage") {
processors_.push_back(std::make_shared<HWC2CHW>());
} else {
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
<< std::endl;
return false;
}
}
return true;
}
bool PaddleClasModel::Preprocess(Mat* mat, FDTensor* output) {
for (size_t i = 0; i < processors_.size(); ++i) {
if (!(*(processors_[i].get()))(mat)) {
FDERROR << "Failed to process image data in " << processors_[i]->Name()
<< "." << std::endl;
return false;
}
}
int channel = mat->Channels();
int width = mat->Width();
int height = mat->Height();
output->name = InputInfoOfRuntime(0).name;
output->SetExternalData({1, channel, height, width}, FDDataType::FP32,
mat->GetCpuMat()->ptr());
return true;
}
bool PaddleClasModel::Postprocess(const FDTensor& infer_result,
ClassifyResult* result, int topk) {
int num_classes = infer_result.shape[1];
const float* infer_result_buffer =
reinterpret_cast<const float*>(infer_result.Data());
topk = std::min(num_classes, topk);
result->label_ids =
utils::TopKIndices(infer_result_buffer, num_classes, topk);
result->scores.resize(topk);
for (int i = 0; i < topk; ++i) {
result->scores[i] = *(infer_result_buffer + result->label_ids[i]);
}
return true;
}
bool PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
Mat mat(*im);
std::vector<FDTensor> processed_data(1);
if (!Preprocess(&mat, &(processed_data[0]))) {
FDERROR << "Failed to preprocess input data while using model:"
<< ModelName() << "." << std::endl;
return false;
}
std::vector<FDTensor> infer_result(1);
if (!Infer(processed_data, &infer_result)) {
FDERROR << "Failed to inference while using model:" << ModelName() << "."
<< std::endl;
return false;
}
if (!Postprocess(infer_result[0], result, topk)) {
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
<< std::endl;
return false;
}
return true;
}
} // namespace classification
} // namespace vision
} // namespace fastdeploy