Files
FastDeploy/fastdeploy/backends/tensorrt/trt_backend.h
heliqi 0805ead0ed add 'GetOutputInfos' and 'GetInputInfos' interface (#232)
add GetOutputInfos GetInputInfos
2022-09-15 13:09:31 +08:00

124 lines
4.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cuda_runtime_api.h>
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include "NvInfer.h"
#include "NvOnnxParser.h"
#include "fastdeploy/backends/backend.h"
#include "fastdeploy/backends/tensorrt/utils.h"
namespace fastdeploy {
struct TrtValueInfo {
std::string name;
std::vector<int> shape;
nvinfer1::DataType dtype;
};
struct TrtBackendOption {
int gpu_id = 0;
bool enable_fp16 = false;
bool enable_int8 = false;
size_t max_batch_size = 32;
size_t max_workspace_size = 1 << 30;
std::map<std::string, std::vector<int32_t>> max_shape;
std::map<std::string, std::vector<int32_t>> min_shape;
std::map<std::string, std::vector<int32_t>> opt_shape;
std::string serialize_file = "";
// inside parameter, maybe remove next version
bool remove_multiclass_nms_ = false;
std::map<std::string, std::string> custom_op_info_;
};
std::vector<int> toVec(const nvinfer1::Dims& dim);
size_t TrtDataTypeSize(const nvinfer1::DataType& dtype);
FDDataType GetFDDataType(const nvinfer1::DataType& dtype);
class TrtBackend : public BaseBackend {
public:
TrtBackend() : engine_(nullptr), context_(nullptr) {}
void BuildOption(const TrtBackendOption& option);
bool InitFromPaddle(const std::string& model_file,
const std::string& params_file,
const TrtBackendOption& option = TrtBackendOption(),
bool verbose = false);
bool InitFromOnnx(const std::string& model_file,
const TrtBackendOption& option = TrtBackendOption(),
bool from_memory_buffer = false);
bool Infer(std::vector<FDTensor>& inputs, std::vector<FDTensor>* outputs);
int NumInputs() const { return inputs_desc_.size(); }
int NumOutputs() const { return outputs_desc_.size(); }
TensorInfo GetInputInfo(int index);
TensorInfo GetOutputInfo(int index);
std::vector<TensorInfo> GetInputInfos() override;
std::vector<TensorInfo> GetOutputInfos() override;
~TrtBackend() {
if (parser_) {
parser_.reset();
}
}
private:
TrtBackendOption option_;
std::shared_ptr<nvinfer1::ICudaEngine> engine_;
std::shared_ptr<nvinfer1::IExecutionContext> context_;
FDUniquePtr<nvonnxparser::IParser> parser_;
FDUniquePtr<nvinfer1::IBuilder> builder_;
FDUniquePtr<nvinfer1::INetworkDefinition> network_;
cudaStream_t stream_{};
std::vector<void*> bindings_;
std::vector<TrtValueInfo> inputs_desc_;
std::vector<TrtValueInfo> outputs_desc_;
std::map<std::string, FDDeviceBuffer> inputs_buffer_;
std::map<std::string, FDDeviceBuffer> outputs_buffer_;
// Sometimes while the number of outputs > 1
// the output order of tensorrt may not be same
// with the original onnx model
// So this parameter will record to origin outputs
// order, to help recover the rigt order
std::map<std::string, int> outputs_order_;
// temporary store onnx model content
// once it used to build trt egnine done
// it will be released
std::string onnx_model_buffer_;
// Stores shape information of the loaded model
// For dynmaic shape will record its range information
// Also will update the range information while inferencing
std::map<std::string, ShapeRangeInfo> shape_range_info_;
void GetInputOutputInfo();
bool CreateTrtEngineFromOnnx(const std::string& onnx_model_buffer);
bool BuildTrtEngine();
bool LoadTrtCache(const std::string& trt_engine_file);
int ShapeRangeInfoUpdated(const std::vector<FDTensor>& inputs);
void SetInputs(const std::vector<FDTensor>& inputs);
void AllocateOutputsBuffer(std::vector<FDTensor>* outputs);
};
} // namespace fastdeploy