mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* [Backend] fix lite backend save model error * [Backend] fixed typos * [FlyCV] optimize the integration of FlyCV * [cmake] close some tests options * [cmake] close some test option * [FlyCV] remove un-need warnings * [FlyCV] remove un-need GetMat method * [FlyCV] optimize FlyCV codes * [cmake] remove un-need cmake function in examples/CMakelists * [cmake] support gflags for Android * [Android] Run button shutter in sub Ui Thread * [Android] Update CameraSurfaceView * [Android] Update Android SDK usage docs * [Android] Add facedet Android app example * [cmake] fix FastDeploy.cmake.in errors for Android * [Doc] update SetProcLibCpuNumThreads API doc
92 lines
3.1 KiB
C++
92 lines
3.1 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/classification/ppcls/model.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace classification {
|
|
|
|
PaddleClasModel::PaddleClasModel(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const std::string& config_file,
|
|
const RuntimeOption& custom_option,
|
|
const ModelFormat& model_format) : preprocessor_(config_file) {
|
|
if (model_format == ModelFormat::PADDLE) {
|
|
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO, Backend::PDINFER,
|
|
Backend::LITE};
|
|
valid_gpu_backends = {Backend::ORT, Backend::PDINFER, Backend::TRT};
|
|
valid_timvx_backends = {Backend::LITE};
|
|
valid_ipu_backends = {Backend::PDINFER};
|
|
} else if (model_format == ModelFormat::ONNX) {
|
|
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
|
|
valid_gpu_backends = {Backend::ORT, Backend::TRT};
|
|
}
|
|
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool PaddleClasModel::Initialize() {
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PaddleClasModel::Predict(cv::Mat* im, ClassifyResult* result, int topk) {
|
|
postprocessor_.SetTopk(topk);
|
|
if (!Predict(*im, result)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PaddleClasModel::Predict(const cv::Mat& im, ClassifyResult* result) {
|
|
std::vector<ClassifyResult> results;
|
|
if (!BatchPredict({im}, &results)) {
|
|
return false;
|
|
}
|
|
*result = std::move(results[0]);
|
|
return true;
|
|
}
|
|
|
|
bool PaddleClasModel::BatchPredict(const std::vector<cv::Mat>& images, std::vector<ClassifyResult>* results) {
|
|
std::vector<FDMat> fd_images = WrapMat(images);
|
|
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) {
|
|
FDERROR << "Failed to preprocess the input image." << std::endl;
|
|
return false;
|
|
}
|
|
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
|
|
if (!Infer(reused_input_tensors_, &reused_output_tensors_)) {
|
|
FDERROR << "Failed to inference by runtime." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
if (!postprocessor_.Run(reused_output_tensors_, results)) {
|
|
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace classification
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|