mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
887 lines
69 KiB
Plaintext
887 lines
69 KiB
Plaintext
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fast_hardamard_kernel.h"
|
|
|
|
#define FULL_MASK 0xffffffff
|
|
|
|
struct uint8 {
|
|
uint4 u;
|
|
uint4 v;
|
|
};
|
|
|
|
template<int BYTES> struct BytesToType {};
|
|
|
|
template<>
|
|
struct BytesToType<32> {
|
|
using Type = uint8;
|
|
static_assert(sizeof(Type) == 32);
|
|
};
|
|
|
|
template<> struct BytesToType<16> {
|
|
using Type = uint4;
|
|
static_assert(sizeof(Type) == 16);
|
|
};
|
|
|
|
template<> struct BytesToType<8> {
|
|
using Type = uint64_t;
|
|
static_assert(sizeof(Type) == 8);
|
|
};
|
|
|
|
template<> struct BytesToType<4> {
|
|
using Type = uint32_t;
|
|
static_assert(sizeof(Type) == 4);
|
|
};
|
|
|
|
template<> struct BytesToType<2> {
|
|
using Type = uint16_t;
|
|
static_assert(sizeof(Type) == 2);
|
|
};
|
|
|
|
template<> struct BytesToType<1> {
|
|
using Type = uint8_t;
|
|
static_assert(sizeof(Type) == 1);
|
|
};
|
|
|
|
template <typename T>
|
|
struct nv_type_traits {
|
|
using type = T;
|
|
};
|
|
|
|
template <>
|
|
struct nv_type_traits<phi::dtype::float16> {
|
|
using type = half;
|
|
};
|
|
|
|
template <>
|
|
struct nv_type_traits<phi::dtype::bfloat16> {
|
|
using type = __nv_bfloat16;
|
|
};
|
|
|
|
template <>
|
|
struct nv_type_traits<int8_t> {
|
|
using type = int8_t;
|
|
};
|
|
|
|
#define DISPATCH_SP_logN(logN, kLogN, ...) \
|
|
if (logN == 10) { \
|
|
constexpr int kLogN = 10; \
|
|
__VA_ARGS__ \
|
|
} else if (logN == 9) { \
|
|
constexpr int kLogN = 9; \
|
|
__VA_ARGS__ \
|
|
} else if (logN == 8) { \
|
|
constexpr int kLogN = 8; \
|
|
__VA_ARGS__ \
|
|
} else if (logN == 7) { \
|
|
constexpr int kLogN = 7; \
|
|
__VA_ARGS__ \
|
|
} else { \
|
|
PADDLE_THROW(phi::errors::Unimplemented("logN = %d is unsupport!", logN)); \
|
|
}
|
|
|
|
#define DISPATCH_SP_VS(vec_size, VEC_SIZE, ...) \
|
|
if (vec_size == 16) { \
|
|
constexpr int VEC_SIZE = 16; \
|
|
__VA_ARGS__ \
|
|
} else if (vec_size == 8) { \
|
|
constexpr int VEC_SIZE = 8; \
|
|
__VA_ARGS__ \
|
|
} else if (vec_size == 4) { \
|
|
constexpr int VEC_SIZE = 4; \
|
|
__VA_ARGS__ \
|
|
} else if (vec_size == 2) { \
|
|
constexpr int VEC_SIZE = 2; \
|
|
__VA_ARGS__ \
|
|
} else if (vec_size == 1) { \
|
|
constexpr int VEC_SIZE = 1; \
|
|
__VA_ARGS__ \
|
|
} else { \
|
|
PADDLE_THROW(phi::errors::Unimplemented("vec_size = %d is unsupport!", vec_size)); \
|
|
}
|
|
|
|
#define DISPATCH_logN(logN, kLogN, ...) \
|
|
if (logN == 11) { \
|
|
constexpr int kLogN = 11; \
|
|
__VA_ARGS__ \
|
|
} else if (logN == 12) { \
|
|
constexpr int kLogN = 12; \
|
|
__VA_ARGS__ \
|
|
} else if (logN == 13) { \
|
|
constexpr int kLogN = 13; \
|
|
__VA_ARGS__ \
|
|
} else if (logN == 14) { \
|
|
constexpr int kLogN = 14; \
|
|
__VA_ARGS__ \
|
|
} else { \
|
|
PADDLE_THROW(phi::errors::Unimplemented("unsupported logN")); \
|
|
}
|
|
|
|
template <typename T, int VecSize>
|
|
__device__ __forceinline__ void hadamard_mult_thread_28_transpose(T x[28][VecSize]) { // 35
|
|
T out[28];
|
|
#pragma unroll
|
|
for (int vi = 0; vi < VecSize; vi++) {
|
|
out[0] = + x[0][vi] + x[1][vi] + x[2][vi] + x[3][vi] + x[4][vi] + x[5][vi] + x[6][vi] + x[7][vi] + x[8][vi] + x[9][vi] + x[10][vi] + x[11][vi] + x[12][vi] + x[13][vi] - x[14][vi] + x[15][vi] + x[16][vi] + x[17][vi] + x[18][vi] + x[19][vi] + x[20][vi] + x[21][vi] + x[22][vi] + x[23][vi] + x[24][vi] + x[25][vi] + x[26][vi] + x[27][vi];
|
|
out[1] = + x[0][vi] + x[1][vi] + x[2][vi] - x[3][vi] + x[4][vi] + x[5][vi] - x[6][vi] - x[7][vi] - x[8][vi] - x[9][vi] + x[10][vi] + x[11][vi] - x[12][vi] + x[13][vi] + x[14][vi] - x[15][vi] + x[16][vi] - x[17][vi] + x[18][vi] + x[19][vi] - x[20][vi] - x[21][vi] - x[22][vi] - x[23][vi] + x[24][vi] + x[25][vi] - x[26][vi] + x[27][vi];
|
|
out[2] = + x[0][vi] + x[1][vi] + x[2][vi] + x[3][vi] - x[4][vi] + x[5][vi] + x[6][vi] - x[7][vi] - x[8][vi] - x[9][vi] - x[10][vi] + x[11][vi] + x[12][vi] - x[13][vi] + x[14][vi] + x[15][vi] - x[16][vi] + x[17][vi] - x[18][vi] + x[19][vi] + x[20][vi] - x[21][vi] - x[22][vi] - x[23][vi] - x[24][vi] + x[25][vi] + x[26][vi] - x[27][vi];
|
|
out[3] = + x[0][vi] - x[1][vi] + x[2][vi] + x[3][vi] + x[4][vi] - x[5][vi] + x[6][vi] + x[7][vi] - x[8][vi] - x[9][vi] - x[10][vi] - x[11][vi] + x[12][vi] + x[13][vi] + x[14][vi] - x[15][vi] + x[16][vi] - x[17][vi] + x[18][vi] - x[19][vi] + x[20][vi] + x[21][vi] - x[22][vi] - x[23][vi] - x[24][vi] - x[25][vi] + x[26][vi] + x[27][vi];
|
|
out[4] = + x[0][vi] + x[1][vi] - x[2][vi] + x[3][vi] + x[4][vi] + x[5][vi] - x[6][vi] + x[7][vi] + x[8][vi] - x[9][vi] - x[10][vi] - x[11][vi] - x[12][vi] + x[13][vi] + x[14][vi] + x[15][vi] - x[16][vi] + x[17][vi] - x[18][vi] + x[19][vi] - x[20][vi] + x[21][vi] + x[22][vi] - x[23][vi] - x[24][vi] - x[25][vi] - x[26][vi] + x[27][vi];
|
|
out[5] = + x[0][vi] + x[1][vi] + x[2][vi] - x[3][vi] + x[4][vi] + x[5][vi] + x[6][vi] - x[7][vi] + x[8][vi] + x[9][vi] - x[10][vi] - x[11][vi] - x[12][vi] - x[13][vi] + x[14][vi] + x[15][vi] + x[16][vi] - x[17][vi] + x[18][vi] - x[19][vi] + x[20][vi] - x[21][vi] + x[22][vi] + x[23][vi] - x[24][vi] - x[25][vi] - x[26][vi] - x[27][vi];
|
|
out[6] = + x[0][vi] - x[1][vi] + x[2][vi] + x[3][vi] - x[4][vi] + x[5][vi] + x[6][vi] + x[7][vi] - x[8][vi] + x[9][vi] + x[10][vi] - x[11][vi] - x[12][vi] - x[13][vi] + x[14][vi] - x[15][vi] + x[16][vi] + x[17][vi] - x[18][vi] + x[19][vi] - x[20][vi] + x[21][vi] - x[22][vi] + x[23][vi] + x[24][vi] - x[25][vi] - x[26][vi] - x[27][vi];
|
|
out[7] = + x[0][vi] - x[1][vi] - x[2][vi] + x[3][vi] + x[4][vi] - x[5][vi] + x[6][vi] + x[7][vi] + x[8][vi] - x[9][vi] + x[10][vi] + x[11][vi] - x[12][vi] - x[13][vi] + x[14][vi] - x[15][vi] - x[16][vi] + x[17][vi] + x[18][vi] - x[19][vi] + x[20][vi] - x[21][vi] + x[22][vi] - x[23][vi] + x[24][vi] + x[25][vi] - x[26][vi] - x[27][vi];
|
|
out[8] = + x[0][vi] - x[1][vi] - x[2][vi] - x[3][vi] + x[4][vi] + x[5][vi] - x[6][vi] + x[7][vi] + x[8][vi] + x[9][vi] - x[10][vi] + x[11][vi] + x[12][vi] - x[13][vi] + x[14][vi] - x[15][vi] - x[16][vi] - x[17][vi] + x[18][vi] + x[19][vi] - x[20][vi] + x[21][vi] - x[22][vi] + x[23][vi] - x[24][vi] + x[25][vi] + x[26][vi] - x[27][vi];
|
|
out[9] = + x[0][vi] - x[1][vi] - x[2][vi] - x[3][vi] - x[4][vi] + x[5][vi] + x[6][vi] - x[7][vi] + x[8][vi] + x[9][vi] + x[10][vi] - x[11][vi] + x[12][vi] + x[13][vi] + x[14][vi] - x[15][vi] - x[16][vi] - x[17][vi] - x[18][vi] + x[19][vi] + x[20][vi] - x[21][vi] + x[22][vi] - x[23][vi] + x[24][vi] - x[25][vi] + x[26][vi] + x[27][vi];
|
|
out[10] = + x[0][vi] + x[1][vi] - x[2][vi] - x[3][vi] - x[4][vi] - x[5][vi] + x[6][vi] + x[7][vi] - x[8][vi] + x[9][vi] + x[10][vi] + x[11][vi] - x[12][vi] + x[13][vi] + x[14][vi] + x[15][vi] - x[16][vi] - x[17][vi] - x[18][vi] - x[19][vi] + x[20][vi] + x[21][vi] - x[22][vi] + x[23][vi] - x[24][vi] + x[25][vi] - x[26][vi] + x[27][vi];
|
|
out[11] = + x[0][vi] + x[1][vi] + x[2][vi] - x[3][vi] - x[4][vi] - x[5][vi] - x[6][vi] + x[7][vi] + x[8][vi] - x[9][vi] + x[10][vi] + x[11][vi] + x[12][vi] - x[13][vi] + x[14][vi] + x[15][vi] + x[16][vi] - x[17][vi] - x[18][vi] - x[19][vi] - x[20][vi] + x[21][vi] + x[22][vi] - x[23][vi] + x[24][vi] - x[25][vi] + x[26][vi] - x[27][vi];
|
|
out[12] = + x[0][vi] - x[1][vi] + x[2][vi] + x[3][vi] - x[4][vi] - x[5][vi] - x[6][vi] - x[7][vi] + x[8][vi] + x[9][vi] - x[10][vi] + x[11][vi] + x[12][vi] + x[13][vi] + x[14][vi] - x[15][vi] + x[16][vi] + x[17][vi] - x[18][vi] - x[19][vi] - x[20][vi] - x[21][vi] + x[22][vi] + x[23][vi] - x[24][vi] + x[25][vi] - x[26][vi] + x[27][vi];
|
|
out[13] = + x[0][vi] + x[1][vi] - x[2][vi] + x[3][vi] + x[4][vi] - x[5][vi] - x[6][vi] - x[7][vi] - x[8][vi] + x[9][vi] + x[10][vi] - x[11][vi] + x[12][vi] + x[13][vi] + x[14][vi] + x[15][vi] - x[16][vi] + x[17][vi] + x[18][vi] - x[19][vi] - x[20][vi] - x[21][vi] - x[22][vi] + x[23][vi] + x[24][vi] - x[25][vi] + x[26][vi] - x[27][vi];
|
|
out[14] = - x[0][vi] + x[1][vi] + x[2][vi] + x[3][vi] + x[4][vi] + x[5][vi] + x[6][vi] + x[7][vi] + x[8][vi] + x[9][vi] + x[10][vi] + x[11][vi] + x[12][vi] + x[13][vi] - x[14][vi] - x[15][vi] - x[16][vi] - x[17][vi] - x[18][vi] - x[19][vi] - x[20][vi] - x[21][vi] - x[22][vi] - x[23][vi] - x[24][vi] - x[25][vi] - x[26][vi] - x[27][vi];
|
|
out[15] = + x[0][vi] - x[1][vi] + x[2][vi] - x[3][vi] + x[4][vi] + x[5][vi] - x[6][vi] - x[7][vi] - x[8][vi] - x[9][vi] + x[10][vi] + x[11][vi] - x[12][vi] + x[13][vi] - x[14][vi] - x[15][vi] - x[16][vi] + x[17][vi] - x[18][vi] - x[19][vi] + x[20][vi] + x[21][vi] + x[22][vi] + x[23][vi] - x[24][vi] - x[25][vi] + x[26][vi] - x[27][vi];
|
|
out[16] = + x[0][vi] + x[1][vi] - x[2][vi] + x[3][vi] - x[4][vi] + x[5][vi] + x[6][vi] - x[7][vi] - x[8][vi] - x[9][vi] - x[10][vi] + x[11][vi] + x[12][vi] - x[13][vi] - x[14][vi] - x[15][vi] - x[16][vi] - x[17][vi] + x[18][vi] - x[19][vi] - x[20][vi] + x[21][vi] + x[22][vi] + x[23][vi] + x[24][vi] - x[25][vi] - x[26][vi] + x[27][vi];
|
|
out[17] = + x[0][vi] - x[1][vi] + x[2][vi] - x[3][vi] + x[4][vi] - x[5][vi] + x[6][vi] + x[7][vi] - x[8][vi] - x[9][vi] - x[10][vi] - x[11][vi] + x[12][vi] + x[13][vi] - x[14][vi] + x[15][vi] - x[16][vi] - x[17][vi] - x[18][vi] + x[19][vi] - x[20][vi] - x[21][vi] + x[22][vi] + x[23][vi] + x[24][vi] + x[25][vi] - x[26][vi] - x[27][vi];
|
|
out[18] = + x[0][vi] + x[1][vi] - x[2][vi] + x[3][vi] - x[4][vi] + x[5][vi] - x[6][vi] + x[7][vi] + x[8][vi] - x[9][vi] - x[10][vi] - x[11][vi] - x[12][vi] + x[13][vi] - x[14][vi] - x[15][vi] + x[16][vi] - x[17][vi] - x[18][vi] - x[19][vi] + x[20][vi] - x[21][vi] - x[22][vi] + x[23][vi] + x[24][vi] + x[25][vi] + x[26][vi] - x[27][vi];
|
|
out[19] = + x[0][vi] + x[1][vi] + x[2][vi] - x[3][vi] + x[4][vi] - x[5][vi] + x[6][vi] - x[7][vi] + x[8][vi] + x[9][vi] - x[10][vi] - x[11][vi] - x[12][vi] - x[13][vi] - x[14][vi] - x[15][vi] - x[16][vi] + x[17][vi] - x[18][vi] - x[19][vi] - x[20][vi] + x[21][vi] - x[22][vi] - x[23][vi] + x[24][vi] + x[25][vi] + x[26][vi] + x[27][vi];
|
|
out[20] = + x[0][vi] - x[1][vi] + x[2][vi] + x[3][vi] - x[4][vi] + x[5][vi] - x[6][vi] + x[7][vi] - x[8][vi] + x[9][vi] + x[10][vi] - x[11][vi] - x[12][vi] - x[13][vi] - x[14][vi] + x[15][vi] - x[16][vi] - x[17][vi] + x[18][vi] - x[19][vi] - x[20][vi] - x[21][vi] + x[22][vi] - x[23][vi] - x[24][vi] + x[25][vi] + x[26][vi] + x[27][vi];
|
|
out[21] = + x[0][vi] - x[1][vi] - x[2][vi] + x[3][vi] + x[4][vi] - x[5][vi] + x[6][vi] - x[7][vi] + x[8][vi] - x[9][vi] + x[10][vi] + x[11][vi] - x[12][vi] - x[13][vi] - x[14][vi] + x[15][vi] + x[16][vi] - x[17][vi] - x[18][vi] + x[19][vi] - x[20][vi] - x[21][vi] - x[22][vi] + x[23][vi] - x[24][vi] - x[25][vi] + x[26][vi] + x[27][vi];
|
|
out[22] = + x[0][vi] - x[1][vi] - x[2][vi] - x[3][vi] + x[4][vi] + x[5][vi] - x[6][vi] + x[7][vi] - x[8][vi] + x[9][vi] - x[10][vi] + x[11][vi] + x[12][vi] - x[13][vi] - x[14][vi] + x[15][vi] + x[16][vi] + x[17][vi] - x[18][vi] - x[19][vi] + x[20][vi] - x[21][vi] - x[22][vi] - x[23][vi] + x[24][vi] - x[25][vi] - x[26][vi] + x[27][vi];
|
|
out[23] = + x[0][vi] - x[1][vi] - x[2][vi] - x[3][vi] - x[4][vi] + x[5][vi] + x[6][vi] - x[7][vi] + x[8][vi] - x[9][vi] + x[10][vi] - x[11][vi] + x[12][vi] + x[13][vi] - x[14][vi] + x[15][vi] + x[16][vi] + x[17][vi] + x[18][vi] - x[19][vi] - x[20][vi] + x[21][vi] - x[22][vi] - x[23][vi] - x[24][vi] + x[25][vi] - x[26][vi] - x[27][vi];
|
|
out[24] = + x[0][vi] + x[1][vi] - x[2][vi] - x[3][vi] - x[4][vi] - x[5][vi] + x[6][vi] + x[7][vi] - x[8][vi] + x[9][vi] - x[10][vi] + x[11][vi] - x[12][vi] + x[13][vi] - x[14][vi] - x[15][vi] + x[16][vi] + x[17][vi] + x[18][vi] + x[19][vi] - x[20][vi] - x[21][vi] + x[22][vi] - x[23][vi] - x[24][vi] - x[25][vi] + x[26][vi] - x[27][vi];
|
|
out[25] = + x[0][vi] + x[1][vi] + x[2][vi] - x[3][vi] - x[4][vi] - x[5][vi] - x[6][vi] + x[7][vi] + x[8][vi] - x[9][vi] + x[10][vi] - x[11][vi] + x[12][vi] - x[13][vi] - x[14][vi] - x[15][vi] - x[16][vi] + x[17][vi] + x[18][vi] + x[19][vi] + x[20][vi] - x[21][vi] - x[22][vi] + x[23][vi] - x[24][vi] - x[25][vi] - x[26][vi] + x[27][vi];
|
|
out[26] = + x[0][vi] - x[1][vi] + x[2][vi] + x[3][vi] - x[4][vi] - x[5][vi] - x[6][vi] - x[7][vi] + x[8][vi] + x[9][vi] - x[10][vi] + x[11][vi] - x[12][vi] + x[13][vi] - x[14][vi] + x[15][vi] - x[16][vi] - x[17][vi] + x[18][vi] + x[19][vi] + x[20][vi] + x[21][vi] - x[22][vi] - x[23][vi] + x[24][vi] - x[25][vi] - x[26][vi] - x[27][vi];
|
|
out[27] = + x[0][vi] + x[1][vi] - x[2][vi] + x[3][vi] + x[4][vi] - x[5][vi] - x[6][vi] - x[7][vi] - x[8][vi] + x[9][vi] + x[10][vi] - x[11][vi] + x[12][vi] - x[13][vi] - x[14][vi] - x[15][vi] + x[16][vi] - x[17][vi] - x[18][vi] + x[19][vi] + x[20][vi] + x[21][vi] + x[22][vi] - x[23][vi] - x[24][vi] + x[25][vi] - x[26][vi] - x[27][vi];
|
|
#pragma unroll
|
|
for (int i = 0; i < 28; i++) { x[i][vi] = out[i]; }
|
|
}
|
|
}
|
|
|
|
template <typename T, int VecSize>
|
|
__device__ __forceinline__ void hadamard_mult_thread_36_transpose(T x[36][VecSize]) { // 4t
|
|
T out[36];
|
|
#pragma unroll
|
|
for (int vi = 0; vi < VecSize; vi++) {
|
|
out[0] = + x[0][vi] + x[1][vi] + x[2][vi] + x[3][vi] + x[4][vi] + x[5][vi] + x[6][vi] + x[7][vi] + x[8][vi] + x[9][vi] + x[10][vi] + x[11][vi] + x[12][vi] + x[13][vi] + x[14][vi] + x[15][vi] + x[16][vi] + x[17][vi] - x[18][vi] + x[19][vi] + x[20][vi] + x[21][vi] + x[22][vi] + x[23][vi] + x[24][vi] + x[25][vi] + x[26][vi] + x[27][vi] + x[28][vi] + x[29][vi] + x[30][vi] + x[31][vi] + x[32][vi] + x[33][vi] + x[34][vi] + x[35][vi];
|
|
out[1] = + x[0][vi] + x[1][vi] + x[2][vi] + x[3][vi] - x[4][vi] + x[5][vi] - x[6][vi] - x[7][vi] - x[8][vi] + x[9][vi] + x[10][vi] - x[11][vi] - x[12][vi] - x[13][vi] + x[14][vi] - x[15][vi] + x[16][vi] + x[17][vi] + x[18][vi] - x[19][vi] + x[20][vi] + x[21][vi] - x[22][vi] + x[23][vi] - x[24][vi] - x[25][vi] - x[26][vi] + x[27][vi] + x[28][vi] - x[29][vi] - x[30][vi] - x[31][vi] + x[32][vi] - x[33][vi] + x[34][vi] + x[35][vi];
|
|
out[2] = + x[0][vi] + x[1][vi] + x[2][vi] + x[3][vi] + x[4][vi] - x[5][vi] + x[6][vi] - x[7][vi] - x[8][vi] - x[9][vi] + x[10][vi] + x[11][vi] - x[12][vi] - x[13][vi] - x[14][vi] + x[15][vi] - x[16][vi] + x[17][vi] + x[18][vi] + x[19][vi] - x[20][vi] + x[21][vi] + x[22][vi] - x[23][vi] + x[24][vi] - x[25][vi] - x[26][vi] - x[27][vi] + x[28][vi] + x[29][vi] - x[30][vi] - x[31][vi] - x[32][vi] + x[33][vi] - x[34][vi] + x[35][vi];
|
|
out[3] = + x[0][vi] + x[1][vi] + x[2][vi] + x[3][vi] + x[4][vi] + x[5][vi] - x[6][vi] + x[7][vi] - x[8][vi] - x[9][vi] - x[10][vi] + x[11][vi] + x[12][vi] - x[13][vi] - x[14][vi] - x[15][vi] + x[16][vi] - x[17][vi] + x[18][vi] + x[19][vi] + x[20][vi] - x[21][vi] + x[22][vi] + x[23][vi] - x[24][vi] + x[25][vi] - x[26][vi] - x[27][vi] - x[28][vi] + x[29][vi] + x[30][vi] - x[31][vi] - x[32][vi] - x[33][vi] + x[34][vi] - x[35][vi];
|
|
out[4] = + x[0][vi] - x[1][vi] + x[2][vi] + x[3][vi] + x[4][vi] + x[5][vi] + x[6][vi] - x[7][vi] + x[8][vi] - x[9][vi] - x[10][vi] - x[11][vi] + x[12][vi] + x[13][vi] - x[14][vi] - x[15][vi] - x[16][vi] + x[17][vi] + x[18][vi] - x[19][vi] + x[20][vi] + x[21][vi] - x[22][vi] + x[23][vi] + x[24][vi] - x[25][vi] + x[26][vi] - x[27][vi] - x[28][vi] - x[29][vi] + x[30][vi] + x[31][vi] - x[32][vi] - x[33][vi] - x[34][vi] + x[35][vi];
|
|
out[5] = + x[0][vi] + x[1][vi] - x[2][vi] + x[3][vi] + x[4][vi] + x[5][vi] + x[6][vi] + x[7][vi] - x[8][vi] + x[9][vi] - x[10][vi] - x[11][vi] - x[12][vi] + x[13][vi] + x[14][vi] - x[15][vi] - x[16][vi] - x[17][vi] + x[18][vi] + x[19][vi] - x[20][vi] + x[21][vi] + x[22][vi] - x[23][vi] + x[24][vi] + x[25][vi] - x[26][vi] + x[27][vi] - x[28][vi] - x[29][vi] - x[30][vi] + x[31][vi] + x[32][vi] - x[33][vi] - x[34][vi] - x[35][vi];
|
|
out[6] = + x[0][vi] - x[1][vi] + x[2][vi] - x[3][vi] + x[4][vi] + x[5][vi] + x[6][vi] + x[7][vi] + x[8][vi] - x[9][vi] + x[10][vi] - x[11][vi] - x[12][vi] - x[13][vi] + x[14][vi] + x[15][vi] - x[16][vi] - x[17][vi] + x[18][vi] - x[19][vi] + x[20][vi] - x[21][vi] + x[22][vi] + x[23][vi] - x[24][vi] + x[25][vi] + x[26][vi] - x[27][vi] + x[28][vi] - x[29][vi] - x[30][vi] - x[31][vi] + x[32][vi] + x[33][vi] - x[34][vi] - x[35][vi];
|
|
out[7] = + x[0][vi] - x[1][vi] - x[2][vi] + x[3][vi] - x[4][vi] + x[5][vi] + x[6][vi] + x[7][vi] + x[8][vi] + x[9][vi] - x[10][vi] + x[11][vi] - x[12][vi] - x[13][vi] - x[14][vi] + x[15][vi] + x[16][vi] - x[17][vi] + x[18][vi] - x[19][vi] - x[20][vi] + x[21][vi] - x[22][vi] + x[23][vi] + x[24][vi] - x[25][vi] + x[26][vi] + x[27][vi] - x[28][vi] + x[29][vi] - x[30][vi] - x[31][vi] - x[32][vi] + x[33][vi] + x[34][vi] - x[35][vi];
|
|
out[8] = + x[0][vi] - x[1][vi] - x[2][vi] - x[3][vi] + x[4][vi] - x[5][vi] + x[6][vi] + x[7][vi] + x[8][vi] + x[9][vi] + x[10][vi] - x[11][vi] + x[12][vi] - x[13][vi] - x[14][vi] - x[15][vi] + x[16][vi] + x[17][vi] + x[18][vi] - x[19][vi] - x[20][vi] - x[21][vi] + x[22][vi] - x[23][vi] + x[24][vi] + x[25][vi] - x[26][vi] + x[27][vi] + x[28][vi] - x[29][vi] + x[30][vi] - x[31][vi] - x[32][vi] - x[33][vi] + x[34][vi] + x[35][vi];
|
|
out[9] = + x[0][vi] + x[1][vi] - x[2][vi] - x[3][vi] - x[4][vi] + x[5][vi] - x[6][vi] + x[7][vi] + x[8][vi] + x[9][vi] + x[10][vi] + x[11][vi] - x[12][vi] + x[13][vi] - x[14][vi] - x[15][vi] - x[16][vi] + x[17][vi] + x[18][vi] + x[19][vi] - x[20][vi] - x[21][vi] - x[22][vi] + x[23][vi] - x[24][vi] + x[25][vi] + x[26][vi] - x[27][vi] + x[28][vi] + x[29][vi] - x[30][vi] + x[31][vi] - x[32][vi] - x[33][vi] - x[34][vi] + x[35][vi];
|
|
out[10] = + x[0][vi] + x[1][vi] + x[2][vi] - x[3][vi] - x[4][vi] - x[5][vi] + x[6][vi] - x[7][vi] + x[8][vi] + x[9][vi] + x[10][vi] + x[11][vi] + x[12][vi] - x[13][vi] + x[14][vi] - x[15][vi] - x[16][vi] - x[17][vi] + x[18][vi] + x[19][vi] + x[20][vi] - x[21][vi] - x[22][vi] - x[23][vi] + x[24][vi] - x[25][vi] + x[26][vi] + x[27][vi] - x[28][vi] + x[29][vi] + x[30][vi] - x[31][vi] + x[32][vi] - x[33][vi] - x[34][vi] - x[35][vi];
|
|
out[11] = + x[0][vi] - x[1][vi] + x[2][vi] + x[3][vi] - x[4][vi] - x[5][vi] - x[6][vi] + x[7][vi] - x[8][vi] + x[9][vi] + x[10][vi] + x[11][vi] + x[12][vi] + x[13][vi] - x[14][vi] + x[15][vi] - x[16][vi] - x[17][vi] + x[18][vi] - x[19][vi] + x[20][vi] + x[21][vi] - x[22][vi] - x[23][vi] - x[24][vi] + x[25][vi] - x[26][vi] + x[27][vi] + x[28][vi] - x[29][vi] + x[30][vi] + x[31][vi] - x[32][vi] + x[33][vi] - x[34][vi] - x[35][vi];
|
|
out[12] = + x[0][vi] - x[1][vi] - x[2][vi] + x[3][vi] + x[4][vi] - x[5][vi] - x[6][vi] - x[7][vi] + x[8][vi] - x[9][vi] + x[10][vi] + x[11][vi] + x[12][vi] + x[13][vi] + x[14][vi] - x[15][vi] + x[16][vi] - x[17][vi] + x[18][vi] - x[19][vi] - x[20][vi] + x[21][vi] + x[22][vi] - x[23][vi] - x[24][vi] - x[25][vi] + x[26][vi] - x[27][vi] + x[28][vi] + x[29][vi] - x[30][vi] + x[31][vi] + x[32][vi] - x[33][vi] + x[34][vi] - x[35][vi];
|
|
out[13] = + x[0][vi] - x[1][vi] - x[2][vi] - x[3][vi] + x[4][vi] + x[5][vi] - x[6][vi] - x[7][vi] - x[8][vi] + x[9][vi] - x[10][vi] + x[11][vi] + x[12][vi] + x[13][vi] + x[14][vi] + x[15][vi] - x[16][vi] + x[17][vi] + x[18][vi] - x[19][vi] - x[20][vi] - x[21][vi] + x[22][vi] + x[23][vi] - x[24][vi] - x[25][vi] - x[26][vi] + x[27][vi] - x[28][vi] + x[29][vi] + x[30][vi] - x[31][vi] + x[32][vi] + x[33][vi] - x[34][vi] + x[35][vi];
|
|
out[14] = + x[0][vi] + x[1][vi] - x[2][vi] - x[3][vi] - x[4][vi] + x[5][vi] + x[6][vi] - x[7][vi] - x[8][vi] - x[9][vi] + x[10][vi] - x[11][vi] + x[12][vi] + x[13][vi] + x[14][vi] + x[15][vi] + x[16][vi] - x[17][vi] + x[18][vi] + x[19][vi] - x[20][vi] - x[21][vi] - x[22][vi] + x[23][vi] + x[24][vi] - x[25][vi] - x[26][vi] - x[27][vi] + x[28][vi] - x[29][vi] + x[30][vi] + x[31][vi] - x[32][vi] + x[33][vi] + x[34][vi] - x[35][vi];
|
|
out[15] = + x[0][vi] - x[1][vi] + x[2][vi] - x[3][vi] - x[4][vi] - x[5][vi] + x[6][vi] + x[7][vi] - x[8][vi] - x[9][vi] - x[10][vi] + x[11][vi] - x[12][vi] + x[13][vi] + x[14][vi] + x[15][vi] + x[16][vi] + x[17][vi] + x[18][vi] - x[19][vi] + x[20][vi] - x[21][vi] - x[22][vi] - x[23][vi] + x[24][vi] + x[25][vi] - x[26][vi] - x[27][vi] - x[28][vi] + x[29][vi] - x[30][vi] + x[31][vi] + x[32][vi] - x[33][vi] + x[34][vi] + x[35][vi];
|
|
out[16] = + x[0][vi] + x[1][vi] - x[2][vi] + x[3][vi] - x[4][vi] - x[5][vi] - x[6][vi] + x[7][vi] + x[8][vi] - x[9][vi] - x[10][vi] - x[11][vi] + x[12][vi] - x[13][vi] + x[14][vi] + x[15][vi] + x[16][vi] + x[17][vi] + x[18][vi] + x[19][vi] - x[20][vi] + x[21][vi] - x[22][vi] - x[23][vi] - x[24][vi] + x[25][vi] + x[26][vi] - x[27][vi] - x[28][vi] - x[29][vi] + x[30][vi] - x[31][vi] + x[32][vi] + x[33][vi] - x[34][vi] + x[35][vi];
|
|
out[17] = + x[0][vi] + x[1][vi] + x[2][vi] - x[3][vi] + x[4][vi] - x[5][vi] - x[6][vi] - x[7][vi] + x[8][vi] + x[9][vi] - x[10][vi] - x[11][vi] - x[12][vi] + x[13][vi] - x[14][vi] + x[15][vi] + x[16][vi] + x[17][vi] + x[18][vi] + x[19][vi] + x[20][vi] - x[21][vi] + x[22][vi] - x[23][vi] - x[24][vi] - x[25][vi] + x[26][vi] + x[27][vi] - x[28][vi] - x[29][vi] - x[30][vi] + x[31][vi] - x[32][vi] + x[33][vi] + x[34][vi] - x[35][vi];
|
|
out[18] = - x[0][vi] + x[1][vi] + x[2][vi] + x[3][vi] + x[4][vi] + x[5][vi] + x[6][vi] + x[7][vi] + x[8][vi] + x[9][vi] + x[10][vi] + x[11][vi] + x[12][vi] + x[13][vi] + x[14][vi] + x[15][vi] + x[16][vi] + x[17][vi] - x[18][vi] - x[19][vi] - x[20][vi] - x[21][vi] - x[22][vi] - x[23][vi] - x[24][vi] - x[25][vi] - x[26][vi] - x[27][vi] - x[28][vi] - x[29][vi] - x[30][vi] - x[31][vi] - x[32][vi] - x[33][vi] - x[34][vi] - x[35][vi];
|
|
out[19] = + x[0][vi] - x[1][vi] + x[2][vi] + x[3][vi] - x[4][vi] + x[5][vi] - x[6][vi] - x[7][vi] - x[8][vi] + x[9][vi] + x[10][vi] - x[11][vi] - x[12][vi] - x[13][vi] + x[14][vi] - x[15][vi] + x[16][vi] + x[17][vi] - x[18][vi] - x[19][vi] - x[20][vi] - x[21][vi] + x[22][vi] - x[23][vi] + x[24][vi] + x[25][vi] + x[26][vi] - x[27][vi] - x[28][vi] + x[29][vi] + x[30][vi] + x[31][vi] - x[32][vi] + x[33][vi] - x[34][vi] - x[35][vi];
|
|
out[20] = + x[0][vi] + x[1][vi] - x[2][vi] + x[3][vi] + x[4][vi] - x[5][vi] + x[6][vi] - x[7][vi] - x[8][vi] - x[9][vi] + x[10][vi] + x[11][vi] - x[12][vi] - x[13][vi] - x[14][vi] + x[15][vi] - x[16][vi] + x[17][vi] - x[18][vi] - x[19][vi] - x[20][vi] - x[21][vi] - x[22][vi] + x[23][vi] - x[24][vi] + x[25][vi] + x[26][vi] + x[27][vi] - x[28][vi] - x[29][vi] + x[30][vi] + x[31][vi] + x[32][vi] - x[33][vi] + x[34][vi] - x[35][vi];
|
|
out[21] = + x[0][vi] + x[1][vi] + x[2][vi] - x[3][vi] + x[4][vi] + x[5][vi] - x[6][vi] + x[7][vi] - x[8][vi] - x[9][vi] - x[10][vi] + x[11][vi] + x[12][vi] - x[13][vi] - x[14][vi] - x[15][vi] + x[16][vi] - x[17][vi] - x[18][vi] - x[19][vi] - x[20][vi] - x[21][vi] - x[22][vi] - x[23][vi] + x[24][vi] - x[25][vi] + x[26][vi] + x[27][vi] + x[28][vi] - x[29][vi] - x[30][vi] + x[31][vi] + x[32][vi] + x[33][vi] - x[34][vi] + x[35][vi];
|
|
out[22] = + x[0][vi] - x[1][vi] + x[2][vi] + x[3][vi] - x[4][vi] + x[5][vi] + x[6][vi] - x[7][vi] + x[8][vi] - x[9][vi] - x[10][vi] - x[11][vi] + x[12][vi] + x[13][vi] - x[14][vi] - x[15][vi] - x[16][vi] + x[17][vi] - x[18][vi] + x[19][vi] - x[20][vi] - x[21][vi] - x[22][vi] - x[23][vi] - x[24][vi] + x[25][vi] - x[26][vi] + x[27][vi] + x[28][vi] + x[29][vi] - x[30][vi] - x[31][vi] + x[32][vi] + x[33][vi] + x[34][vi] - x[35][vi];
|
|
out[23] = + x[0][vi] + x[1][vi] - x[2][vi] + x[3][vi] + x[4][vi] - x[5][vi] + x[6][vi] + x[7][vi] - x[8][vi] + x[9][vi] - x[10][vi] - x[11][vi] - x[12][vi] + x[13][vi] + x[14][vi] - x[15][vi] - x[16][vi] - x[17][vi] - x[18][vi] - x[19][vi] + x[20][vi] - x[21][vi] - x[22][vi] - x[23][vi] - x[24][vi] - x[25][vi] + x[26][vi] - x[27][vi] + x[28][vi] + x[29][vi] + x[30][vi] - x[31][vi] - x[32][vi] + x[33][vi] + x[34][vi] + x[35][vi];
|
|
out[24] = + x[0][vi] - x[1][vi] + x[2][vi] - x[3][vi] + x[4][vi] + x[5][vi] - x[6][vi] + x[7][vi] + x[8][vi] - x[9][vi] + x[10][vi] - x[11][vi] - x[12][vi] - x[13][vi] + x[14][vi] + x[15][vi] - x[16][vi] - x[17][vi] - x[18][vi] + x[19][vi] - x[20][vi] + x[21][vi] - x[22][vi] - x[23][vi] - x[24][vi] - x[25][vi] - x[26][vi] + x[27][vi] - x[28][vi] + x[29][vi] + x[30][vi] + x[31][vi] - x[32][vi] - x[33][vi] + x[34][vi] + x[35][vi];
|
|
out[25] = + x[0][vi] - x[1][vi] - x[2][vi] + x[3][vi] - x[4][vi] + x[5][vi] + x[6][vi] - x[7][vi] + x[8][vi] + x[9][vi] - x[10][vi] + x[11][vi] - x[12][vi] - x[13][vi] - x[14][vi] + x[15][vi] + x[16][vi] - x[17][vi] - x[18][vi] + x[19][vi] + x[20][vi] - x[21][vi] + x[22][vi] - x[23][vi] - x[24][vi] - x[25][vi] - x[26][vi] - x[27][vi] + x[28][vi] - x[29][vi] + x[30][vi] + x[31][vi] + x[32][vi] - x[33][vi] - x[34][vi] + x[35][vi];
|
|
out[26] = + x[0][vi] - x[1][vi] - x[2][vi] - x[3][vi] + x[4][vi] - x[5][vi] + x[6][vi] + x[7][vi] - x[8][vi] + x[9][vi] + x[10][vi] - x[11][vi] + x[12][vi] - x[13][vi] - x[14][vi] - x[15][vi] + x[16][vi] + x[17][vi] - x[18][vi] + x[19][vi] + x[20][vi] + x[21][vi] - x[22][vi] + x[23][vi] - x[24][vi] - x[25][vi] - x[26][vi] - x[27][vi] - x[28][vi] + x[29][vi] - x[30][vi] + x[31][vi] + x[32][vi] + x[33][vi] - x[34][vi] - x[35][vi];
|
|
out[27] = + x[0][vi] + x[1][vi] - x[2][vi] - x[3][vi] - x[4][vi] + x[5][vi] - x[6][vi] + x[7][vi] + x[8][vi] - x[9][vi] + x[10][vi] + x[11][vi] - x[12][vi] + x[13][vi] - x[14][vi] - x[15][vi] - x[16][vi] + x[17][vi] - x[18][vi] - x[19][vi] + x[20][vi] + x[21][vi] + x[22][vi] - x[23][vi] + x[24][vi] - x[25][vi] - x[26][vi] - x[27][vi] - x[28][vi] - x[29][vi] + x[30][vi] - x[31][vi] + x[32][vi] + x[33][vi] + x[34][vi] - x[35][vi];
|
|
out[28] = + x[0][vi] + x[1][vi] + x[2][vi] - x[3][vi] - x[4][vi] - x[5][vi] + x[6][vi] - x[7][vi] + x[8][vi] + x[9][vi] - x[10][vi] + x[11][vi] + x[12][vi] - x[13][vi] + x[14][vi] - x[15][vi] - x[16][vi] - x[17][vi] - x[18][vi] - x[19][vi] - x[20][vi] + x[21][vi] + x[22][vi] + x[23][vi] - x[24][vi] + x[25][vi] - x[26][vi] - x[27][vi] - x[28][vi] - x[29][vi] - x[30][vi] + x[31][vi] - x[32][vi] + x[33][vi] + x[34][vi] + x[35][vi];
|
|
out[29] = + x[0][vi] - x[1][vi] + x[2][vi] + x[3][vi] - x[4][vi] - x[5][vi] - x[6][vi] + x[7][vi] - x[8][vi] + x[9][vi] + x[10][vi] - x[11][vi] + x[12][vi] + x[13][vi] - x[14][vi] + x[15][vi] - x[16][vi] - x[17][vi] - x[18][vi] + x[19][vi] - x[20][vi] - x[21][vi] + x[22][vi] + x[23][vi] + x[24][vi] - x[25][vi] + x[26][vi] - x[27][vi] - x[28][vi] - x[29][vi] - x[30][vi] - x[31][vi] + x[32][vi] - x[33][vi] + x[34][vi] + x[35][vi];
|
|
out[30] = + x[0][vi] - x[1][vi] - x[2][vi] + x[3][vi] + x[4][vi] - x[5][vi] - x[6][vi] - x[7][vi] + x[8][vi] - x[9][vi] + x[10][vi] + x[11][vi] - x[12][vi] + x[13][vi] + x[14][vi] - x[15][vi] + x[16][vi] - x[17][vi] - x[18][vi] + x[19][vi] + x[20][vi] - x[21][vi] - x[22][vi] + x[23][vi] + x[24][vi] + x[25][vi] - x[26][vi] + x[27][vi] - x[28][vi] - x[29][vi] - x[30][vi] - x[31][vi] - x[32][vi] + x[33][vi] - x[34][vi] + x[35][vi];
|
|
out[31] = + x[0][vi] - x[1][vi] - x[2][vi] - x[3][vi] + x[4][vi] + x[5][vi] - x[6][vi] - x[7][vi] - x[8][vi] + x[9][vi] - x[10][vi] + x[11][vi] + x[12][vi] - x[13][vi] + x[14][vi] + x[15][vi] - x[16][vi] + x[17][vi] - x[18][vi] + x[19][vi] + x[20][vi] + x[21][vi] - x[22][vi] - x[23][vi] + x[24][vi] + x[25][vi] + x[26][vi] - x[27][vi] + x[28][vi] - x[29][vi] - x[30][vi] - x[31][vi] - x[32][vi] - x[33][vi] + x[34][vi] - x[35][vi];
|
|
out[32] = + x[0][vi] + x[1][vi] - x[2][vi] - x[3][vi] - x[4][vi] + x[5][vi] + x[6][vi] - x[7][vi] - x[8][vi] - x[9][vi] + x[10][vi] - x[11][vi] + x[12][vi] + x[13][vi] - x[14][vi] + x[15][vi] + x[16][vi] - x[17][vi] - x[18][vi] - x[19][vi] + x[20][vi] + x[21][vi] + x[22][vi] - x[23][vi] - x[24][vi] + x[25][vi] + x[26][vi] + x[27][vi] - x[28][vi] + x[29][vi] - x[30][vi] - x[31][vi] - x[32][vi] - x[33][vi] - x[34][vi] + x[35][vi];
|
|
out[33] = + x[0][vi] - x[1][vi] + x[2][vi] - x[3][vi] - x[4][vi] - x[5][vi] + x[6][vi] + x[7][vi] - x[8][vi] - x[9][vi] - x[10][vi] + x[11][vi] - x[12][vi] + x[13][vi] + x[14][vi] - x[15][vi] + x[16][vi] + x[17][vi] - x[18][vi] + x[19][vi] - x[20][vi] + x[21][vi] + x[22][vi] + x[23][vi] - x[24][vi] - x[25][vi] + x[26][vi] + x[27][vi] + x[28][vi] - x[29][vi] + x[30][vi] - x[31][vi] - x[32][vi] - x[33][vi] - x[34][vi] - x[35][vi];
|
|
out[34] = + x[0][vi] + x[1][vi] - x[2][vi] + x[3][vi] - x[4][vi] - x[5][vi] - x[6][vi] + x[7][vi] + x[8][vi] - x[9][vi] - x[10][vi] - x[11][vi] + x[12][vi] - x[13][vi] + x[14][vi] + x[15][vi] - x[16][vi] + x[17][vi] - x[18][vi] - x[19][vi] + x[20][vi] - x[21][vi] + x[22][vi] + x[23][vi] + x[24][vi] - x[25][vi] - x[26][vi] + x[27][vi] + x[28][vi] + x[29][vi] - x[30][vi] + x[31][vi] - x[32][vi] - x[33][vi] - x[34][vi] - x[35][vi];
|
|
out[35] = + x[0][vi] + x[1][vi] + x[2][vi] - x[3][vi] + x[4][vi] - x[5][vi] - x[6][vi] - x[7][vi] + x[8][vi] + x[9][vi] - x[10][vi] - x[11][vi] - x[12][vi] + x[13][vi] - x[14][vi] + x[15][vi] + x[16][vi] - x[17][vi] - x[18][vi] - x[19][vi] - x[20][vi] + x[21][vi] - x[22][vi] + x[23][vi] + x[24][vi] + x[25][vi] - x[26][vi] - x[27][vi] + x[28][vi] + x[29][vi] + x[30][vi] - x[31][vi] + x[32][vi] - x[33][vi] - x[34][vi] - x[35][vi];
|
|
#pragma unroll
|
|
for (int i = 0; i < 36; i++) { x[i][vi] = out[i]; }
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__device__ __forceinline__ void hadamard_mult_thread_28(T x[28]) { // 35
|
|
T out[28];
|
|
out[0] = + x[0] + x[1] + x[2] + x[3] + x[4] + x[5] + x[6] + x[7] + x[8] + x[9] + x[10] + x[11] + x[12] + x[13] - x[14] + x[15] + x[16] + x[17] + x[18] + x[19] + x[20] + x[21] + x[22] + x[23] + x[24] + x[25] + x[26] + x[27];
|
|
out[1] = + x[0] + x[1] + x[2] - x[3] + x[4] + x[5] - x[6] - x[7] - x[8] - x[9] + x[10] + x[11] - x[12] + x[13] + x[14] - x[15] + x[16] - x[17] + x[18] + x[19] - x[20] - x[21] - x[22] - x[23] + x[24] + x[25] - x[26] + x[27];
|
|
out[2] = + x[0] + x[1] + x[2] + x[3] - x[4] + x[5] + x[6] - x[7] - x[8] - x[9] - x[10] + x[11] + x[12] - x[13] + x[14] + x[15] - x[16] + x[17] - x[18] + x[19] + x[20] - x[21] - x[22] - x[23] - x[24] + x[25] + x[26] - x[27];
|
|
out[3] = + x[0] - x[1] + x[2] + x[3] + x[4] - x[5] + x[6] + x[7] - x[8] - x[9] - x[10] - x[11] + x[12] + x[13] + x[14] - x[15] + x[16] - x[17] + x[18] - x[19] + x[20] + x[21] - x[22] - x[23] - x[24] - x[25] + x[26] + x[27];
|
|
out[4] = + x[0] + x[1] - x[2] + x[3] + x[4] + x[5] - x[6] + x[7] + x[8] - x[9] - x[10] - x[11] - x[12] + x[13] + x[14] + x[15] - x[16] + x[17] - x[18] + x[19] - x[20] + x[21] + x[22] - x[23] - x[24] - x[25] - x[26] + x[27];
|
|
out[5] = + x[0] + x[1] + x[2] - x[3] + x[4] + x[5] + x[6] - x[7] + x[8] + x[9] - x[10] - x[11] - x[12] - x[13] + x[14] + x[15] + x[16] - x[17] + x[18] - x[19] + x[20] - x[21] + x[22] + x[23] - x[24] - x[25] - x[26] - x[27];
|
|
out[6] = + x[0] - x[1] + x[2] + x[3] - x[4] + x[5] + x[6] + x[7] - x[8] + x[9] + x[10] - x[11] - x[12] - x[13] + x[14] - x[15] + x[16] + x[17] - x[18] + x[19] - x[20] + x[21] - x[22] + x[23] + x[24] - x[25] - x[26] - x[27];
|
|
out[7] = + x[0] - x[1] - x[2] + x[3] + x[4] - x[5] + x[6] + x[7] + x[8] - x[9] + x[10] + x[11] - x[12] - x[13] + x[14] - x[15] - x[16] + x[17] + x[18] - x[19] + x[20] - x[21] + x[22] - x[23] + x[24] + x[25] - x[26] - x[27];
|
|
out[8] = + x[0] - x[1] - x[2] - x[3] + x[4] + x[5] - x[6] + x[7] + x[8] + x[9] - x[10] + x[11] + x[12] - x[13] + x[14] - x[15] - x[16] - x[17] + x[18] + x[19] - x[20] + x[21] - x[22] + x[23] - x[24] + x[25] + x[26] - x[27];
|
|
out[9] = + x[0] - x[1] - x[2] - x[3] - x[4] + x[5] + x[6] - x[7] + x[8] + x[9] + x[10] - x[11] + x[12] + x[13] + x[14] - x[15] - x[16] - x[17] - x[18] + x[19] + x[20] - x[21] + x[22] - x[23] + x[24] - x[25] + x[26] + x[27];
|
|
out[10] = + x[0] + x[1] - x[2] - x[3] - x[4] - x[5] + x[6] + x[7] - x[8] + x[9] + x[10] + x[11] - x[12] + x[13] + x[14] + x[15] - x[16] - x[17] - x[18] - x[19] + x[20] + x[21] - x[22] + x[23] - x[24] + x[25] - x[26] + x[27];
|
|
out[11] = + x[0] + x[1] + x[2] - x[3] - x[4] - x[5] - x[6] + x[7] + x[8] - x[9] + x[10] + x[11] + x[12] - x[13] + x[14] + x[15] + x[16] - x[17] - x[18] - x[19] - x[20] + x[21] + x[22] - x[23] + x[24] - x[25] + x[26] - x[27];
|
|
out[12] = + x[0] - x[1] + x[2] + x[3] - x[4] - x[5] - x[6] - x[7] + x[8] + x[9] - x[10] + x[11] + x[12] + x[13] + x[14] - x[15] + x[16] + x[17] - x[18] - x[19] - x[20] - x[21] + x[22] + x[23] - x[24] + x[25] - x[26] + x[27];
|
|
out[13] = + x[0] + x[1] - x[2] + x[3] + x[4] - x[5] - x[6] - x[7] - x[8] + x[9] + x[10] - x[11] + x[12] + x[13] + x[14] + x[15] - x[16] + x[17] + x[18] - x[19] - x[20] - x[21] - x[22] + x[23] + x[24] - x[25] + x[26] - x[27];
|
|
out[14] = - x[0] + x[1] + x[2] + x[3] + x[4] + x[5] + x[6] + x[7] + x[8] + x[9] + x[10] + x[11] + x[12] + x[13] - x[14] - x[15] - x[16] - x[17] - x[18] - x[19] - x[20] - x[21] - x[22] - x[23] - x[24] - x[25] - x[26] - x[27];
|
|
out[15] = + x[0] - x[1] + x[2] - x[3] + x[4] + x[5] - x[6] - x[7] - x[8] - x[9] + x[10] + x[11] - x[12] + x[13] - x[14] - x[15] - x[16] + x[17] - x[18] - x[19] + x[20] + x[21] + x[22] + x[23] - x[24] - x[25] + x[26] - x[27];
|
|
out[16] = + x[0] + x[1] - x[2] + x[3] - x[4] + x[5] + x[6] - x[7] - x[8] - x[9] - x[10] + x[11] + x[12] - x[13] - x[14] - x[15] - x[16] - x[17] + x[18] - x[19] - x[20] + x[21] + x[22] + x[23] + x[24] - x[25] - x[26] + x[27];
|
|
out[17] = + x[0] - x[1] + x[2] - x[3] + x[4] - x[5] + x[6] + x[7] - x[8] - x[9] - x[10] - x[11] + x[12] + x[13] - x[14] + x[15] - x[16] - x[17] - x[18] + x[19] - x[20] - x[21] + x[22] + x[23] + x[24] + x[25] - x[26] - x[27];
|
|
out[18] = + x[0] + x[1] - x[2] + x[3] - x[4] + x[5] - x[6] + x[7] + x[8] - x[9] - x[10] - x[11] - x[12] + x[13] - x[14] - x[15] + x[16] - x[17] - x[18] - x[19] + x[20] - x[21] - x[22] + x[23] + x[24] + x[25] + x[26] - x[27];
|
|
out[19] = + x[0] + x[1] + x[2] - x[3] + x[4] - x[5] + x[6] - x[7] + x[8] + x[9] - x[10] - x[11] - x[12] - x[13] - x[14] - x[15] - x[16] + x[17] - x[18] - x[19] - x[20] + x[21] - x[22] - x[23] + x[24] + x[25] + x[26] + x[27];
|
|
out[20] = + x[0] - x[1] + x[2] + x[3] - x[4] + x[5] - x[6] + x[7] - x[8] + x[9] + x[10] - x[11] - x[12] - x[13] - x[14] + x[15] - x[16] - x[17] + x[18] - x[19] - x[20] - x[21] + x[22] - x[23] - x[24] + x[25] + x[26] + x[27];
|
|
out[21] = + x[0] - x[1] - x[2] + x[3] + x[4] - x[5] + x[6] - x[7] + x[8] - x[9] + x[10] + x[11] - x[12] - x[13] - x[14] + x[15] + x[16] - x[17] - x[18] + x[19] - x[20] - x[21] - x[22] + x[23] - x[24] - x[25] + x[26] + x[27];
|
|
out[22] = + x[0] - x[1] - x[2] - x[3] + x[4] + x[5] - x[6] + x[7] - x[8] + x[9] - x[10] + x[11] + x[12] - x[13] - x[14] + x[15] + x[16] + x[17] - x[18] - x[19] + x[20] - x[21] - x[22] - x[23] + x[24] - x[25] - x[26] + x[27];
|
|
out[23] = + x[0] - x[1] - x[2] - x[3] - x[4] + x[5] + x[6] - x[7] + x[8] - x[9] + x[10] - x[11] + x[12] + x[13] - x[14] + x[15] + x[16] + x[17] + x[18] - x[19] - x[20] + x[21] - x[22] - x[23] - x[24] + x[25] - x[26] - x[27];
|
|
out[24] = + x[0] + x[1] - x[2] - x[3] - x[4] - x[5] + x[6] + x[7] - x[8] + x[9] - x[10] + x[11] - x[12] + x[13] - x[14] - x[15] + x[16] + x[17] + x[18] + x[19] - x[20] - x[21] + x[22] - x[23] - x[24] - x[25] + x[26] - x[27];
|
|
out[25] = + x[0] + x[1] + x[2] - x[3] - x[4] - x[5] - x[6] + x[7] + x[8] - x[9] + x[10] - x[11] + x[12] - x[13] - x[14] - x[15] - x[16] + x[17] + x[18] + x[19] + x[20] - x[21] - x[22] + x[23] - x[24] - x[25] - x[26] + x[27];
|
|
out[26] = + x[0] - x[1] + x[2] + x[3] - x[4] - x[5] - x[6] - x[7] + x[8] + x[9] - x[10] + x[11] - x[12] + x[13] - x[14] + x[15] - x[16] - x[17] + x[18] + x[19] + x[20] + x[21] - x[22] - x[23] + x[24] - x[25] - x[26] - x[27];
|
|
out[27] = + x[0] + x[1] - x[2] + x[3] + x[4] - x[5] - x[6] - x[7] - x[8] + x[9] + x[10] - x[11] + x[12] - x[13] - x[14] - x[15] + x[16] - x[17] - x[18] + x[19] + x[20] + x[21] + x[22] - x[23] - x[24] + x[25] - x[26] - x[27];
|
|
#pragma unroll
|
|
for (int i = 0; i < 28; i++) { x[i] = out[i]; }
|
|
}
|
|
|
|
template <typename T>
|
|
__device__ __forceinline__ void hadamard_mult_thread_36(T x[36]) { // 4t
|
|
T out[36];
|
|
out[0] = + x[0] + x[1] + x[2] + x[3] + x[4] + x[5] + x[6] + x[7] + x[8] + x[9] + x[10] + x[11] + x[12] + x[13] + x[14] + x[15] + x[16] + x[17] - x[18] + x[19] + x[20] + x[21] + x[22] + x[23] + x[24] + x[25] + x[26] + x[27] + x[28] + x[29] + x[30] + x[31] + x[32] + x[33] + x[34] + x[35];
|
|
out[1] = + x[0] + x[1] + x[2] + x[3] - x[4] + x[5] - x[6] - x[7] - x[8] + x[9] + x[10] - x[11] - x[12] - x[13] + x[14] - x[15] + x[16] + x[17] + x[18] - x[19] + x[20] + x[21] - x[22] + x[23] - x[24] - x[25] - x[26] + x[27] + x[28] - x[29] - x[30] - x[31] + x[32] - x[33] + x[34] + x[35];
|
|
out[2] = + x[0] + x[1] + x[2] + x[3] + x[4] - x[5] + x[6] - x[7] - x[8] - x[9] + x[10] + x[11] - x[12] - x[13] - x[14] + x[15] - x[16] + x[17] + x[18] + x[19] - x[20] + x[21] + x[22] - x[23] + x[24] - x[25] - x[26] - x[27] + x[28] + x[29] - x[30] - x[31] - x[32] + x[33] - x[34] + x[35];
|
|
out[3] = + x[0] + x[1] + x[2] + x[3] + x[4] + x[5] - x[6] + x[7] - x[8] - x[9] - x[10] + x[11] + x[12] - x[13] - x[14] - x[15] + x[16] - x[17] + x[18] + x[19] + x[20] - x[21] + x[22] + x[23] - x[24] + x[25] - x[26] - x[27] - x[28] + x[29] + x[30] - x[31] - x[32] - x[33] + x[34] - x[35];
|
|
out[4] = + x[0] - x[1] + x[2] + x[3] + x[4] + x[5] + x[6] - x[7] + x[8] - x[9] - x[10] - x[11] + x[12] + x[13] - x[14] - x[15] - x[16] + x[17] + x[18] - x[19] + x[20] + x[21] - x[22] + x[23] + x[24] - x[25] + x[26] - x[27] - x[28] - x[29] + x[30] + x[31] - x[32] - x[33] - x[34] + x[35];
|
|
out[5] = + x[0] + x[1] - x[2] + x[3] + x[4] + x[5] + x[6] + x[7] - x[8] + x[9] - x[10] - x[11] - x[12] + x[13] + x[14] - x[15] - x[16] - x[17] + x[18] + x[19] - x[20] + x[21] + x[22] - x[23] + x[24] + x[25] - x[26] + x[27] - x[28] - x[29] - x[30] + x[31] + x[32] - x[33] - x[34] - x[35];
|
|
out[6] = + x[0] - x[1] + x[2] - x[3] + x[4] + x[5] + x[6] + x[7] + x[8] - x[9] + x[10] - x[11] - x[12] - x[13] + x[14] + x[15] - x[16] - x[17] + x[18] - x[19] + x[20] - x[21] + x[22] + x[23] - x[24] + x[25] + x[26] - x[27] + x[28] - x[29] - x[30] - x[31] + x[32] + x[33] - x[34] - x[35];
|
|
out[7] = + x[0] - x[1] - x[2] + x[3] - x[4] + x[5] + x[6] + x[7] + x[8] + x[9] - x[10] + x[11] - x[12] - x[13] - x[14] + x[15] + x[16] - x[17] + x[18] - x[19] - x[20] + x[21] - x[22] + x[23] + x[24] - x[25] + x[26] + x[27] - x[28] + x[29] - x[30] - x[31] - x[32] + x[33] + x[34] - x[35];
|
|
out[8] = + x[0] - x[1] - x[2] - x[3] + x[4] - x[5] + x[6] + x[7] + x[8] + x[9] + x[10] - x[11] + x[12] - x[13] - x[14] - x[15] + x[16] + x[17] + x[18] - x[19] - x[20] - x[21] + x[22] - x[23] + x[24] + x[25] - x[26] + x[27] + x[28] - x[29] + x[30] - x[31] - x[32] - x[33] + x[34] + x[35];
|
|
out[9] = + x[0] + x[1] - x[2] - x[3] - x[4] + x[5] - x[6] + x[7] + x[8] + x[9] + x[10] + x[11] - x[12] + x[13] - x[14] - x[15] - x[16] + x[17] + x[18] + x[19] - x[20] - x[21] - x[22] + x[23] - x[24] + x[25] + x[26] - x[27] + x[28] + x[29] - x[30] + x[31] - x[32] - x[33] - x[34] + x[35];
|
|
out[10] = + x[0] + x[1] + x[2] - x[3] - x[4] - x[5] + x[6] - x[7] + x[8] + x[9] + x[10] + x[11] + x[12] - x[13] + x[14] - x[15] - x[16] - x[17] + x[18] + x[19] + x[20] - x[21] - x[22] - x[23] + x[24] - x[25] + x[26] + x[27] - x[28] + x[29] + x[30] - x[31] + x[32] - x[33] - x[34] - x[35];
|
|
out[11] = + x[0] - x[1] + x[2] + x[3] - x[4] - x[5] - x[6] + x[7] - x[8] + x[9] + x[10] + x[11] + x[12] + x[13] - x[14] + x[15] - x[16] - x[17] + x[18] - x[19] + x[20] + x[21] - x[22] - x[23] - x[24] + x[25] - x[26] + x[27] + x[28] - x[29] + x[30] + x[31] - x[32] + x[33] - x[34] - x[35];
|
|
out[12] = + x[0] - x[1] - x[2] + x[3] + x[4] - x[5] - x[6] - x[7] + x[8] - x[9] + x[10] + x[11] + x[12] + x[13] + x[14] - x[15] + x[16] - x[17] + x[18] - x[19] - x[20] + x[21] + x[22] - x[23] - x[24] - x[25] + x[26] - x[27] + x[28] + x[29] - x[30] + x[31] + x[32] - x[33] + x[34] - x[35];
|
|
out[13] = + x[0] - x[1] - x[2] - x[3] + x[4] + x[5] - x[6] - x[7] - x[8] + x[9] - x[10] + x[11] + x[12] + x[13] + x[14] + x[15] - x[16] + x[17] + x[18] - x[19] - x[20] - x[21] + x[22] + x[23] - x[24] - x[25] - x[26] + x[27] - x[28] + x[29] + x[30] - x[31] + x[32] + x[33] - x[34] + x[35];
|
|
out[14] = + x[0] + x[1] - x[2] - x[3] - x[4] + x[5] + x[6] - x[7] - x[8] - x[9] + x[10] - x[11] + x[12] + x[13] + x[14] + x[15] + x[16] - x[17] + x[18] + x[19] - x[20] - x[21] - x[22] + x[23] + x[24] - x[25] - x[26] - x[27] + x[28] - x[29] + x[30] + x[31] - x[32] + x[33] + x[34] - x[35];
|
|
out[15] = + x[0] - x[1] + x[2] - x[3] - x[4] - x[5] + x[6] + x[7] - x[8] - x[9] - x[10] + x[11] - x[12] + x[13] + x[14] + x[15] + x[16] + x[17] + x[18] - x[19] + x[20] - x[21] - x[22] - x[23] + x[24] + x[25] - x[26] - x[27] - x[28] + x[29] - x[30] + x[31] + x[32] - x[33] + x[34] + x[35];
|
|
out[16] = + x[0] + x[1] - x[2] + x[3] - x[4] - x[5] - x[6] + x[7] + x[8] - x[9] - x[10] - x[11] + x[12] - x[13] + x[14] + x[15] + x[16] + x[17] + x[18] + x[19] - x[20] + x[21] - x[22] - x[23] - x[24] + x[25] + x[26] - x[27] - x[28] - x[29] + x[30] - x[31] + x[32] + x[33] - x[34] + x[35];
|
|
out[17] = + x[0] + x[1] + x[2] - x[3] + x[4] - x[5] - x[6] - x[7] + x[8] + x[9] - x[10] - x[11] - x[12] + x[13] - x[14] + x[15] + x[16] + x[17] + x[18] + x[19] + x[20] - x[21] + x[22] - x[23] - x[24] - x[25] + x[26] + x[27] - x[28] - x[29] - x[30] + x[31] - x[32] + x[33] + x[34] - x[35];
|
|
out[18] = - x[0] + x[1] + x[2] + x[3] + x[4] + x[5] + x[6] + x[7] + x[8] + x[9] + x[10] + x[11] + x[12] + x[13] + x[14] + x[15] + x[16] + x[17] - x[18] - x[19] - x[20] - x[21] - x[22] - x[23] - x[24] - x[25] - x[26] - x[27] - x[28] - x[29] - x[30] - x[31] - x[32] - x[33] - x[34] - x[35];
|
|
out[19] = + x[0] - x[1] + x[2] + x[3] - x[4] + x[5] - x[6] - x[7] - x[8] + x[9] + x[10] - x[11] - x[12] - x[13] + x[14] - x[15] + x[16] + x[17] - x[18] - x[19] - x[20] - x[21] + x[22] - x[23] + x[24] + x[25] + x[26] - x[27] - x[28] + x[29] + x[30] + x[31] - x[32] + x[33] - x[34] - x[35];
|
|
out[20] = + x[0] + x[1] - x[2] + x[3] + x[4] - x[5] + x[6] - x[7] - x[8] - x[9] + x[10] + x[11] - x[12] - x[13] - x[14] + x[15] - x[16] + x[17] - x[18] - x[19] - x[20] - x[21] - x[22] + x[23] - x[24] + x[25] + x[26] + x[27] - x[28] - x[29] + x[30] + x[31] + x[32] - x[33] + x[34] - x[35];
|
|
out[21] = + x[0] + x[1] + x[2] - x[3] + x[4] + x[5] - x[6] + x[7] - x[8] - x[9] - x[10] + x[11] + x[12] - x[13] - x[14] - x[15] + x[16] - x[17] - x[18] - x[19] - x[20] - x[21] - x[22] - x[23] + x[24] - x[25] + x[26] + x[27] + x[28] - x[29] - x[30] + x[31] + x[32] + x[33] - x[34] + x[35];
|
|
out[22] = + x[0] - x[1] + x[2] + x[3] - x[4] + x[5] + x[6] - x[7] + x[8] - x[9] - x[10] - x[11] + x[12] + x[13] - x[14] - x[15] - x[16] + x[17] - x[18] + x[19] - x[20] - x[21] - x[22] - x[23] - x[24] + x[25] - x[26] + x[27] + x[28] + x[29] - x[30] - x[31] + x[32] + x[33] + x[34] - x[35];
|
|
out[23] = + x[0] + x[1] - x[2] + x[3] + x[4] - x[5] + x[6] + x[7] - x[8] + x[9] - x[10] - x[11] - x[12] + x[13] + x[14] - x[15] - x[16] - x[17] - x[18] - x[19] + x[20] - x[21] - x[22] - x[23] - x[24] - x[25] + x[26] - x[27] + x[28] + x[29] + x[30] - x[31] - x[32] + x[33] + x[34] + x[35];
|
|
out[24] = + x[0] - x[1] + x[2] - x[3] + x[4] + x[5] - x[6] + x[7] + x[8] - x[9] + x[10] - x[11] - x[12] - x[13] + x[14] + x[15] - x[16] - x[17] - x[18] + x[19] - x[20] + x[21] - x[22] - x[23] - x[24] - x[25] - x[26] + x[27] - x[28] + x[29] + x[30] + x[31] - x[32] - x[33] + x[34] + x[35];
|
|
out[25] = + x[0] - x[1] - x[2] + x[3] - x[4] + x[5] + x[6] - x[7] + x[8] + x[9] - x[10] + x[11] - x[12] - x[13] - x[14] + x[15] + x[16] - x[17] - x[18] + x[19] + x[20] - x[21] + x[22] - x[23] - x[24] - x[25] - x[26] - x[27] + x[28] - x[29] + x[30] + x[31] + x[32] - x[33] - x[34] + x[35];
|
|
out[26] = + x[0] - x[1] - x[2] - x[3] + x[4] - x[5] + x[6] + x[7] - x[8] + x[9] + x[10] - x[11] + x[12] - x[13] - x[14] - x[15] + x[16] + x[17] - x[18] + x[19] + x[20] + x[21] - x[22] + x[23] - x[24] - x[25] - x[26] - x[27] - x[28] + x[29] - x[30] + x[31] + x[32] + x[33] - x[34] - x[35];
|
|
out[27] = + x[0] + x[1] - x[2] - x[3] - x[4] + x[5] - x[6] + x[7] + x[8] - x[9] + x[10] + x[11] - x[12] + x[13] - x[14] - x[15] - x[16] + x[17] - x[18] - x[19] + x[20] + x[21] + x[22] - x[23] + x[24] - x[25] - x[26] - x[27] - x[28] - x[29] + x[30] - x[31] + x[32] + x[33] + x[34] - x[35];
|
|
out[28] = + x[0] + x[1] + x[2] - x[3] - x[4] - x[5] + x[6] - x[7] + x[8] + x[9] - x[10] + x[11] + x[12] - x[13] + x[14] - x[15] - x[16] - x[17] - x[18] - x[19] - x[20] + x[21] + x[22] + x[23] - x[24] + x[25] - x[26] - x[27] - x[28] - x[29] - x[30] + x[31] - x[32] + x[33] + x[34] + x[35];
|
|
out[29] = + x[0] - x[1] + x[2] + x[3] - x[4] - x[5] - x[6] + x[7] - x[8] + x[9] + x[10] - x[11] + x[12] + x[13] - x[14] + x[15] - x[16] - x[17] - x[18] + x[19] - x[20] - x[21] + x[22] + x[23] + x[24] - x[25] + x[26] - x[27] - x[28] - x[29] - x[30] - x[31] + x[32] - x[33] + x[34] + x[35];
|
|
out[30] = + x[0] - x[1] - x[2] + x[3] + x[4] - x[5] - x[6] - x[7] + x[8] - x[9] + x[10] + x[11] - x[12] + x[13] + x[14] - x[15] + x[16] - x[17] - x[18] + x[19] + x[20] - x[21] - x[22] + x[23] + x[24] + x[25] - x[26] + x[27] - x[28] - x[29] - x[30] - x[31] - x[32] + x[33] - x[34] + x[35];
|
|
out[31] = + x[0] - x[1] - x[2] - x[3] + x[4] + x[5] - x[6] - x[7] - x[8] + x[9] - x[10] + x[11] + x[12] - x[13] + x[14] + x[15] - x[16] + x[17] - x[18] + x[19] + x[20] + x[21] - x[22] - x[23] + x[24] + x[25] + x[26] - x[27] + x[28] - x[29] - x[30] - x[31] - x[32] - x[33] + x[34] - x[35];
|
|
out[32] = + x[0] + x[1] - x[2] - x[3] - x[4] + x[5] + x[6] - x[7] - x[8] - x[9] + x[10] - x[11] + x[12] + x[13] - x[14] + x[15] + x[16] - x[17] - x[18] - x[19] + x[20] + x[21] + x[22] - x[23] - x[24] + x[25] + x[26] + x[27] - x[28] + x[29] - x[30] - x[31] - x[32] - x[33] - x[34] + x[35];
|
|
out[33] = + x[0] - x[1] + x[2] - x[3] - x[4] - x[5] + x[6] + x[7] - x[8] - x[9] - x[10] + x[11] - x[12] + x[13] + x[14] - x[15] + x[16] + x[17] - x[18] + x[19] - x[20] + x[21] + x[22] + x[23] - x[24] - x[25] + x[26] + x[27] + x[28] - x[29] + x[30] - x[31] - x[32] - x[33] - x[34] - x[35];
|
|
out[34] = + x[0] + x[1] - x[2] + x[3] - x[4] - x[5] - x[6] + x[7] + x[8] - x[9] - x[10] - x[11] + x[12] - x[13] + x[14] + x[15] - x[16] + x[17] - x[18] - x[19] + x[20] - x[21] + x[22] + x[23] + x[24] - x[25] - x[26] + x[27] + x[28] + x[29] - x[30] + x[31] - x[32] - x[33] - x[34] - x[35];
|
|
out[35] = + x[0] + x[1] + x[2] - x[3] + x[4] - x[5] - x[6] - x[7] + x[8] + x[9] - x[10] - x[11] - x[12] + x[13] - x[14] + x[15] + x[16] - x[17] - x[18] - x[19] - x[20] + x[21] - x[22] + x[23] + x[24] + x[25] - x[26] - x[27] + x[28] + x[29] + x[30] - x[31] + x[32] - x[33] - x[34] - x[35];
|
|
#pragma unroll
|
|
for (int i = 0; i < 36; i++) { x[i] = out[i]; }
|
|
}
|
|
|
|
template <int kNChunks, typename T>
|
|
__device__ __forceinline__ void hadamard_mult_thread_chunk_28(T x[kNChunks][28]) {
|
|
#pragma unroll
|
|
for (int c = 0; c < kNChunks; ++c) { hadamard_mult_thread_28(x[c]); }
|
|
}
|
|
|
|
template <int kNChunks, typename T>
|
|
__device__ __forceinline__ void hadamard_mult_thread_chunk_36(T x[kNChunks][36]) {
|
|
#pragma unroll
|
|
for (int c = 0; c < kNChunks; ++c) { hadamard_mult_thread_36(x[c]); }
|
|
}
|
|
|
|
template <int kNChunks, int VecSize, bool UseDiagonalBlockMatrix, typename T>
|
|
inline __device__ void load_input(const T *x, T x_vals[kNChunks][VecSize], int dim) {
|
|
using vec_t = typename BytesToType<sizeof(T) * VecSize>::Type;
|
|
#pragma unroll
|
|
for (int c = 0; c < kNChunks; ++c) {
|
|
int offset;
|
|
if constexpr (UseDiagonalBlockMatrix) {
|
|
static_assert(kNChunks == 1);
|
|
offset = blockIdx.y * blockDim.x + threadIdx.x;
|
|
} else {
|
|
offset = c * blockDim.x + threadIdx.x;
|
|
}
|
|
if (offset * VecSize < dim) {
|
|
reinterpret_cast<vec_t*>(x_vals)[c] = reinterpret_cast<const vec_t*>(x)[offset];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename InType, typename OutType>
|
|
__forceinline__ __device__ OutType QuantHelperFunc(const InType input,
|
|
const float scale,
|
|
const int round_type,
|
|
const float max_bound,
|
|
const float min_bound) {
|
|
float quant_value = max_bound * scale * static_cast<float>(input);
|
|
|
|
if (round_type == 0) {
|
|
quant_value = static_cast<float>(rint(quant_value));
|
|
} else {
|
|
quant_value = static_cast<float>(round(quant_value));
|
|
}
|
|
return static_cast<OutType>(ClipFunc<float>(quant_value, min_bound, max_bound));
|
|
}
|
|
|
|
template <int kNChunks, int VecSize, bool UseDiagonalBlockMatrix, typename T, typename OutT>
|
|
inline __device__ void smooth_quant_store_output(
|
|
OutT *out,
|
|
const T *shift,
|
|
const T *smooth,
|
|
T out_vals[kNChunks][VecSize],
|
|
const float quant_scale,
|
|
const int quant_round_type,
|
|
const float quant_max_bound,
|
|
const float quant_min_bound,
|
|
const int dim) {
|
|
using DstVec = AlignedVector<OutT, VecSize>;
|
|
using Vec = AlignedVector<T, VecSize>;
|
|
DstVec dst_vec;
|
|
Vec shift_vec;
|
|
Vec smooth_vec;
|
|
#pragma unroll
|
|
for (int c = 0; c < kNChunks; ++c) {
|
|
int base_idx;
|
|
if constexpr (UseDiagonalBlockMatrix) {
|
|
base_idx = blockIdx.y * blockDim.x + threadIdx.x;
|
|
} else {
|
|
base_idx = c * blockDim.x + threadIdx.x;
|
|
}
|
|
const int idx = base_idx * VecSize;
|
|
if (idx < dim) {
|
|
Load<T, VecSize>(shift + idx, &shift_vec);
|
|
Load<T, VecSize>(smooth + idx, &smooth_vec);
|
|
#pragma unroll
|
|
for (int vi = 0; vi < VecSize; ++vi) {
|
|
out_vals[c][vi] = (out_vals[c][vi] + shift_vec[vi]) * smooth_vec[vi];
|
|
dst_vec[vi] = QuantHelperFunc<float, OutT>(
|
|
static_cast<float>(out_vals[c][vi]),
|
|
quant_scale,
|
|
quant_round_type,
|
|
quant_max_bound,
|
|
quant_min_bound);
|
|
}
|
|
Store<OutT, VecSize>(dst_vec, out + idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int kNChunks, int VecSize, bool UseDiagonalBlockMatrix, typename T, typename OutT>
|
|
inline __device__ void quant_store_output(
|
|
OutT *out,
|
|
T out_vals[kNChunks][VecSize],
|
|
const float quant_scale,
|
|
const int quant_round_type,
|
|
const float quant_max_bound,
|
|
const float quant_min_bound,
|
|
const int dim) {
|
|
using DstVec = AlignedVector<OutT, VecSize>;
|
|
using Vec = AlignedVector<T, VecSize>;
|
|
DstVec dst_vec;
|
|
#pragma unroll
|
|
for (int c = 0; c < kNChunks; ++c) {
|
|
int base_idx;
|
|
if constexpr (UseDiagonalBlockMatrix) {
|
|
base_idx = blockIdx.y * blockDim.x + threadIdx.x;
|
|
} else {
|
|
base_idx = c * blockDim.x + threadIdx.x;
|
|
}
|
|
const int idx = base_idx * VecSize;
|
|
if (idx < dim) {
|
|
#pragma unroll
|
|
for (int vi = 0; vi < VecSize; ++vi) {
|
|
// out_vals[c][vi] = (out_vals[c][vi] + shift_vec[vi]) * smooth_vec[vi];
|
|
dst_vec[vi] = QuantHelperFunc<float, OutT>(
|
|
static_cast<float>(out_vals[c][vi]),
|
|
quant_scale,
|
|
quant_round_type,
|
|
quant_max_bound,
|
|
quant_min_bound);
|
|
}
|
|
Store<OutT, VecSize>(dst_vec, out + idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int kNChunks, int VecSize, bool UseDiagonalBlockMatrix, typename T, typename OutT>
|
|
inline __device__ void store_output(OutT *out, T out_vals[kNChunks][VecSize], int dim) {
|
|
using vec_t = typename BytesToType<sizeof(T) * VecSize>::Type;
|
|
#pragma unroll
|
|
for (int c = 0; c < kNChunks; ++c) {
|
|
int offset;
|
|
if constexpr (UseDiagonalBlockMatrix) {
|
|
offset = blockIdx.y * blockDim.x + threadIdx.x;
|
|
} else {
|
|
offset = c * blockDim.x + threadIdx.x;
|
|
}
|
|
if (offset * VecSize < dim) {
|
|
reinterpret_cast<vec_t*>(out)[offset] = reinterpret_cast<const vec_t*>(out_vals)[c];
|
|
}
|
|
}
|
|
}
|
|
|
|
template<int kLogN, int kNChunks, typename T>
|
|
__device__ __forceinline__ void hadamard_mult_thread_transpose(T x[1 << kLogN][kNChunks]) {
|
|
constexpr int N = 1 << kLogN;
|
|
#pragma unroll
|
|
for (int i = 0; i < kLogN; ++i) {
|
|
const int stride = 1 << i;
|
|
#pragma unroll
|
|
for (int j = 0; j < N / 2; ++j) {
|
|
const int lo = j & (stride - 1);
|
|
const int idx = (j - lo) * 2 + lo;
|
|
#pragma unroll
|
|
for (int c = 0; c < kNChunks; ++c) {
|
|
const T a = x[idx][c];
|
|
const T b = x[idx + stride][c];
|
|
x[idx][c] = a + b;
|
|
x[idx + stride][c] = a - b;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<int kLogN, int kNChunks, typename T>
|
|
__device__ __forceinline__ void hadamard_mult_thread(T x[kNChunks][1 << kLogN]) {
|
|
constexpr int N = 1 << kLogN;
|
|
#pragma unroll
|
|
for (int i = 0; i < kLogN; ++i) {
|
|
const int stride = 1 << i;
|
|
#pragma unroll
|
|
for (int j = 0; j < N / 2; ++j) {
|
|
const int lo = j & (stride - 1);
|
|
const int idx = (j - lo) * 2 + lo;
|
|
#pragma unroll
|
|
for (int c = 0; c < kNChunks; ++c) {
|
|
const T a = x[c][idx];
|
|
const T b = x[c][idx + stride];
|
|
x[c][idx] = a + b;
|
|
x[c][idx + stride] = a - b;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<int kLogWarpSize, int kStepStart, int kNChunks, int kNItems, typename T>
|
|
__device__ __forceinline__ void hadamard_mult_warp(T x[kNChunks][kNItems]) {
|
|
constexpr int N = 1 << kLogWarpSize;
|
|
int lane_id = threadIdx.x % N;
|
|
#pragma unroll
|
|
for (int step = kStepStart; step < kLogWarpSize; ++step) {
|
|
const int lane_mask = 1 << step;
|
|
const T sign = (lane_id & lane_mask) ? -1.f : 1.f;
|
|
#pragma unroll
|
|
for (int c = 0; c < kNChunks; ++c) {
|
|
#pragma unroll
|
|
for (int i = 0; i < kNItems; ++i) {
|
|
T x_val_other = __shfl_xor_sync(FULL_MASK, x[c][i], lane_mask);
|
|
x[c][i] = sign * x[c][i] + x_val_other;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int kNChunks, int kChunksPerExchange, int kNElts, int kWarpSize, int kNWarps, bool Pre, typename vec_t, typename T>
|
|
inline __device__ void exchange_smem_pre(T x_vals[kNChunks][kNElts], vec_t *smem) {
|
|
// kNChunks表示整体需要多少次循环才能处理完
|
|
// kChunksPerExchange表示每次循环可以处理多少个chunk
|
|
// kNExchanges表示多少次循环才能处理完所有数据
|
|
constexpr int kNThreads = kWarpSize * kNWarps;
|
|
const int warp_id = threadIdx.x / kWarpSize;
|
|
const int lane_id = threadIdx.x % kWarpSize;
|
|
const int row_t = threadIdx.x % kNWarps;
|
|
const int col_t = threadIdx.x / kNWarps;
|
|
#pragma unroll
|
|
for (int c0 = 0; c0 < kNChunks / kChunksPerExchange; ++c0) {
|
|
// 搬多少次chunk算完所有数据
|
|
__syncthreads();
|
|
#pragma unroll
|
|
for (int c1 = 0; c1 < kChunksPerExchange; ++c1) {
|
|
// 每次循环搬多少数据把smem塞满
|
|
// smem[c1 * kNThreads + (Pre ? warp_id * kWarpSize + lane_id ^ warp_id : row_t * kWarpSize + col_t ^ row_t)] = *reinterpret_cast<vec_t*>(x_vals[c0 * kChunksPerExchange + c1]);
|
|
smem[c1 * kNThreads + (Pre ? warp_id * kWarpSize + lane_id : row_t * kWarpSize + col_t)] = *reinterpret_cast<vec_t*>(x_vals[c0 * kChunksPerExchange + c1]);
|
|
}
|
|
__syncthreads();
|
|
#pragma unroll
|
|
for (int c1 = 0; c1 < kChunksPerExchange; ++c1) {
|
|
// *reinterpret_cast<vec_t*>(x_vals[c0 * kChunksPerExchange + c1]) = smem[c1 * kNThreads + (Pre ? row_t * kWarpSize + col_t ^ row_t : warp_id * kWarpSize + lane_id ^ warp_id)];
|
|
*reinterpret_cast<vec_t*>(x_vals[c0 * kChunksPerExchange + c1]) = smem[c1 * kNThreads + (Pre ? row_t * kWarpSize + col_t : warp_id * kWarpSize + lane_id)];
|
|
}
|
|
}
|
|
}
|
|
|
|
constexpr int cilog2(int val) { return val > 0 ? 1 + cilog2(val >> 1) : -1; }
|
|
|
|
template <typename T, typename OutT, int kThreads, int kNBytes, int VecSize, int N,
|
|
int kNChunks, int kSmeSize, int kRounds, int kChunksPerSmemSize, bool UseDiagonalBlockMatrix = false>
|
|
__global__ __launch_bounds__(kThreads)
|
|
void moe_fast_hardamard_kernel(const T *x,
|
|
const int64_t *expert_idx_per_token,
|
|
const T *shift,
|
|
const T *smooth,
|
|
const float* quant_scales,
|
|
const int quant_round_type,
|
|
const float quant_max_bound,
|
|
const float quant_min_bound,
|
|
const int64_t token_num,
|
|
const int64_t dim,
|
|
OutT *out) {
|
|
using vec_t = typename BytesToType<sizeof(T) * VecSize>::Type;
|
|
constexpr int kLogVecSize = cilog2(VecSize);
|
|
constexpr int kLogWarpSize = cilog2(32);
|
|
constexpr int kWarpSize = 32;
|
|
constexpr int kNWarps = kThreads / kWarpSize;
|
|
constexpr int kLogNWarps = cilog2(kNWarps);
|
|
constexpr int kLogNChunks = cilog2(kNChunks);
|
|
|
|
extern __shared__ char smem_[];
|
|
vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_);
|
|
|
|
for (int token_id = blockIdx.x; token_id < token_num; token_id += gridDim.x) {
|
|
const T *x_now = x + token_id * dim;
|
|
OutT *out_now = out + token_id * dim;
|
|
T init_value = static_cast<T>(0.f);
|
|
T x_vals[kNChunks][VecSize] = {init_value};
|
|
|
|
load_input<kNChunks, VecSize, UseDiagonalBlockMatrix, T>(x_now, x_vals, dim);
|
|
#ifdef DEBUG_HARDAMARD
|
|
if (blockIdx.x == 0 && threadIdx.x == 0) {
|
|
for (int i = 0; i < 1; ++i) {
|
|
printf("chunk_id0: %d\n", i);
|
|
for (int j = 0; j < VecSize; ++j) {
|
|
printf("%f ", (float)x_vals[i][j]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
__syncthreads();
|
|
#endif
|
|
|
|
hadamard_mult_thread<kLogVecSize, kNChunks>(x_vals);
|
|
#ifdef DEBUG_HARDAMARD
|
|
if (blockIdx.x == 0 && threadIdx.x == 0) {
|
|
for (int i = 0; i < 1; ++i) {
|
|
printf("chunk_id1: %d, kLogVecSize: %d\n", i, kLogVecSize);
|
|
for (int j = 0; j < VecSize; ++j) {
|
|
printf("%f ", (float)x_vals[i][j]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
__syncthreads();
|
|
#endif
|
|
hadamard_mult_warp<kLogWarpSize, 0, kNChunks, VecSize>(x_vals);
|
|
#ifdef DEBUG_HARDAMARD
|
|
if (blockIdx.x == 0 && threadIdx.x == 0) {
|
|
for (int i = 0; i < 1; ++i) {
|
|
printf("chunk_id2: %d\n", i);
|
|
for (int j = 0; j < VecSize; ++j) {
|
|
printf("%f ", (float)x_vals[i][j]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
__syncthreads();
|
|
#endif
|
|
if constexpr (kNWarps > 1) {
|
|
// 先让连续的NWARPS个线程拿到其余warps上的数据
|
|
exchange_smem_pre<kNChunks, kChunksPerSmemSize, VecSize, kWarpSize, kNWarps, true, vec_t>(x_vals, smem_exchange);
|
|
// 交叉计算
|
|
hadamard_mult_warp<kLogNWarps, 0, kNChunks, VecSize>(x_vals);
|
|
// 再换回来
|
|
exchange_smem_pre<kNChunks, kChunksPerSmemSize, VecSize, kWarpSize, kNWarps, false, vec_t>(x_vals, smem_exchange);
|
|
}
|
|
if constexpr (kNChunks > 1) {
|
|
// T x_vals_transposed[VecSize][kNChunks] = {init_value};
|
|
// #pragma unroll
|
|
// for (int c = 0; c < kNChunks; ++c) {
|
|
// #pragma unroll
|
|
// for (int i = 0; i < VecSize; ++i) { x_vals_transposed[i][c] = x_vals[c][i]; }
|
|
// }
|
|
// if constexpr (kNChunks == 28) {
|
|
// hadamard_mult_thread_chunk_28<VecSize>(x_vals_transposed);
|
|
// } else if constexpr (kNChunks == 36) {
|
|
// hadamard_mult_thread_chunk_36<VecSize>(x_vals_transposed);
|
|
// } else {
|
|
// constexpr int kLogNChunks = cilog2(kNChunks);
|
|
// static_assert(1 << kLogNChunks == kNChunks, "kNChunks must be a power of 2");
|
|
// hadamard_mult_thread<kLogNChunks, VecSize>(x_vals_transposed);
|
|
// }
|
|
// #pragma unroll
|
|
// for (int c = 0; c < kNChunks; ++c) {
|
|
// #pragma unroll
|
|
// for (int i = 0; i < VecSize; ++i) { x_vals[c][i] = x_vals_transposed[i][c]; }
|
|
// }
|
|
if constexpr (kNChunks == 28) {
|
|
hadamard_mult_thread_28_transpose<T, VecSize>(x_vals);
|
|
} else if constexpr (kNChunks == 36) {
|
|
hadamard_mult_thread_36_transpose<T, VecSize>(x_vals);
|
|
} else {
|
|
constexpr int kLogNChunks = cilog2(kNChunks);
|
|
static_assert(1 << kLogNChunks == kNChunks, "kNChunks must be a power of 2");
|
|
hadamard_mult_thread_transpose<kLogNChunks, VecSize>(x_vals);
|
|
}
|
|
}
|
|
if (quant_scales) {
|
|
int64_t expert_id = expert_idx_per_token[token_id];
|
|
float quant_scale = quant_scales[expert_id];
|
|
if (shift) {
|
|
smooth_quant_store_output<kNChunks, VecSize, UseDiagonalBlockMatrix, T, OutT>(
|
|
out_now,
|
|
shift,
|
|
smooth,
|
|
x_vals,
|
|
quant_scale,
|
|
quant_round_type,
|
|
quant_max_bound,
|
|
quant_min_bound,
|
|
dim);
|
|
} else {
|
|
quant_store_output<kNChunks, VecSize, UseDiagonalBlockMatrix, T, OutT>(
|
|
out_now,
|
|
x_vals,
|
|
quant_scale,
|
|
quant_round_type,
|
|
quant_max_bound,
|
|
quant_min_bound,
|
|
dim);
|
|
}
|
|
} else {
|
|
store_output<kNChunks, VecSize, UseDiagonalBlockMatrix, T>(out_now, x_vals, dim);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T, typename OutT, int kLogN, int VecSize, int kNChunks, int kThreads, bool UseDiagonalBlockMatrix>
|
|
void MoeFastHardamardImplWrapper(const T *x,
|
|
const int64_t *expert_idx_per_token,
|
|
const T *shift,
|
|
const T *smooth,
|
|
const float* quant_scales,
|
|
const int quant_round_type,
|
|
const float quant_max_bound,
|
|
const float quant_min_bound,
|
|
const int64_t token_num,
|
|
const int64_t dim,
|
|
OutT* out,
|
|
cudaStream_t stream) {
|
|
using nv_type = typename nv_type_traits<T>::type;
|
|
using out_type = typename nv_type_traits<OutT>::type;
|
|
constexpr int kNBytes = sizeof(T);
|
|
constexpr int N = 1 << kLogN; // pad
|
|
constexpr int kSmemSize = std::min(N * kNBytes, 32 * 1024);
|
|
constexpr int kRounds = N * kNBytes / kSmemSize;
|
|
constexpr int kChunksPerSmemSize = kSmemSize / (kThreads * VecSize * kNBytes);
|
|
VLOG(1) << "real_dim: " << dim << ", N: " << N;
|
|
VLOG(1) << "kNChunks: " << kNChunks;
|
|
VLOG(1) << "kNBytes: " << kNBytes;
|
|
VLOG(1) << "kSmemSize: " << kSmemSize;
|
|
VLOG(1) << "kRounds: " << kRounds;
|
|
VLOG(1) << "kChunksPerSmemSize: " << kChunksPerSmemSize;
|
|
const int dev_id = 0;
|
|
int sm_count;
|
|
int act_blocks_per_sm;
|
|
cudaDeviceGetAttribute(&sm_count, cudaDevAttrMultiProcessorCount, dev_id);
|
|
auto kernel = moe_fast_hardamard_kernel<nv_type, out_type, kThreads, kNBytes, VecSize, N, kNChunks, kSmemSize, kRounds, kChunksPerSmemSize, UseDiagonalBlockMatrix>;
|
|
cudaOccupancyMaxActiveBlocksPerMultiprocessor(
|
|
&act_blocks_per_sm, kernel, kThreads, kSmemSize);
|
|
const int num_blocks_per_wave = sm_count * act_blocks_per_sm;
|
|
dim3 grid;
|
|
grid.x = min(static_cast<int64_t>(num_blocks_per_wave), token_num);
|
|
if constexpr (UseDiagonalBlockMatrix) {
|
|
grid.y = ceil(dim / (kThreads * VecSize));
|
|
}
|
|
kernel<<<grid, kThreads, kSmemSize, stream>>>(
|
|
reinterpret_cast<const nv_type*>(x),
|
|
expert_idx_per_token,
|
|
reinterpret_cast<const nv_type*>(shift),
|
|
reinterpret_cast<const nv_type*>(smooth),
|
|
quant_scales,
|
|
quant_round_type,
|
|
quant_max_bound,
|
|
quant_min_bound,
|
|
token_num,
|
|
dim,
|
|
reinterpret_cast<out_type*>(out)
|
|
);
|
|
CUDA_CHECK(cudaDeviceSynchronize());
|
|
}
|
|
|
|
template <typename T, typename OutT>
|
|
void MoeFastHardamardWrapper(const T *x_data,
|
|
const int64_t *expert_idx_per_token,
|
|
const T *shift,
|
|
const T *smooth,
|
|
const float* quant_scales,
|
|
const int quant_round_type,
|
|
const float quant_max_bound,
|
|
const float quant_min_bound,
|
|
const int64_t token_num,
|
|
const int64_t dim,
|
|
OutT* out,
|
|
cudaStream_t &stream) {
|
|
bool FLAGS_hardamard_use_diagonal_block_matrix = true;
|
|
|
|
static const char* FLAGS_hardamard_moe_block_size = std::getenv("FLAGS_hardamard_moe_block_size");
|
|
static const int32_t hardamard_moe_block_size = FLAGS_hardamard_moe_block_size != nullptr ?
|
|
stoi(std::string(FLAGS_hardamard_moe_block_size)) : 512;
|
|
constexpr int kThreads = 128;
|
|
if (FLAGS_hardamard_use_diagonal_block_matrix) {
|
|
const int VecSize = hardamard_moe_block_size / kThreads; // 128 / 128 = 1
|
|
const int logN = int(ceil(std::log2(kThreads * VecSize)));
|
|
constexpr int kNChunks = 1;
|
|
DISPATCH_SP_VS(VecSize, VEC_SIZE, {
|
|
DISPATCH_SP_logN(logN, kLogN, {
|
|
MoeFastHardamardImplWrapper<T, OutT, kLogN, VEC_SIZE, kNChunks, kThreads, true>(
|
|
x_data,
|
|
expert_idx_per_token,
|
|
shift,
|
|
smooth,
|
|
quant_scales,
|
|
quant_round_type,
|
|
quant_max_bound,
|
|
quant_min_bound,
|
|
token_num,
|
|
dim,
|
|
out,
|
|
stream);
|
|
})});
|
|
} else {
|
|
if (!((dim / 28) & (dim / 28 - 1))) {
|
|
VLOG(1) << "28 * 2^n";
|
|
const int logN = int(ceil(std::log2(dim / 28)));
|
|
constexpr int kNChunks = 28;
|
|
DISPATCH_SP_logN(logN, kLogN, {
|
|
constexpr int VecSize = (1 << kLogN) / kThreads;
|
|
MoeFastHardamardImplWrapper<T, OutT, kLogN, VecSize, kNChunks, kThreads, false>(
|
|
x_data,
|
|
expert_idx_per_token,
|
|
shift,
|
|
smooth,
|
|
quant_scales,
|
|
quant_round_type,
|
|
quant_max_bound,
|
|
quant_min_bound,
|
|
token_num,
|
|
dim,
|
|
out,
|
|
stream);
|
|
});
|
|
} else if (!((dim / 36) & (dim / 36 - 1))) {
|
|
VLOG(1) << "36 * 2^n";
|
|
const int logN = int(ceil(std::log2(dim / 36)));
|
|
constexpr int kNChunks = 36;
|
|
DISPATCH_SP_logN(logN, kLogN, {
|
|
constexpr int VecSize = (1 << kLogN) / kThreads;
|
|
MoeFastHardamardImplWrapper<T, OutT, kLogN, VecSize, kNChunks, kThreads, false>(
|
|
x_data,
|
|
expert_idx_per_token,
|
|
shift,
|
|
smooth,
|
|
quant_scales,
|
|
quant_round_type,
|
|
quant_max_bound,
|
|
quant_min_bound,
|
|
token_num,
|
|
dim,
|
|
out,
|
|
stream);
|
|
});
|
|
} else {
|
|
VLOG(1) << "2^n";
|
|
const int logN = int(ceil(std::log2(dim)));
|
|
constexpr int VecSize = 16 / sizeof(T);
|
|
DISPATCH_logN(logN, kLogN, {
|
|
constexpr int kNChunks = (1 << kLogN) / (kThreads * VecSize);
|
|
MoeFastHardamardImplWrapper<T, OutT, kLogN, VecSize, kNChunks, kThreads, false>(
|
|
x_data,
|
|
expert_idx_per_token,
|
|
shift,
|
|
smooth,
|
|
quant_scales,
|
|
quant_round_type,
|
|
quant_max_bound,
|
|
quant_min_bound,
|
|
token_num,
|
|
dim,
|
|
out,
|
|
stream);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
template void MoeFastHardamardWrapper<phi::dtype::float16, phi::dtype::float16>(
|
|
const phi::dtype::float16 *x_data,
|
|
const int64_t *expert_idx_per_token,
|
|
const phi::dtype::float16 *shift,
|
|
const phi::dtype::float16 *smooth,
|
|
const float* quant_scales,
|
|
const int quant_round_type,
|
|
const float quant_max_bound,
|
|
const float quant_min_bound,
|
|
const int64_t token_num,
|
|
const int64_t dim,
|
|
phi::dtype::float16 *out,
|
|
cudaStream_t &stream
|
|
);
|
|
|
|
template void MoeFastHardamardWrapper<phi::dtype::float16, int8_t>(
|
|
const phi::dtype::float16 *x_data,
|
|
const int64_t *expert_idx_per_token,
|
|
const phi::dtype::float16 *shift,
|
|
const phi::dtype::float16 *smooth,
|
|
const float* quant_scales,
|
|
const int quant_round_type,
|
|
const float quant_max_bound,
|
|
const float quant_min_bound,
|
|
const int64_t token_num,
|
|
const int64_t dim,
|
|
int8_t *out,
|
|
cudaStream_t &stream
|
|
);
|
|
|
|
template void MoeFastHardamardWrapper<phi::dtype::bfloat16, phi::dtype::bfloat16>(
|
|
const phi::dtype::bfloat16 *x_data,
|
|
const int64_t *expert_idx_per_token,
|
|
const phi::dtype::bfloat16 *shift,
|
|
const phi::dtype::bfloat16 *smooth,
|
|
const float* quant_scales,
|
|
const int quant_round_type,
|
|
const float quant_max_bound,
|
|
const float quant_min_bound,
|
|
const int64_t token_num,
|
|
const int64_t dim,
|
|
phi::dtype::bfloat16 *out,
|
|
cudaStream_t &stream
|
|
);
|
|
|
|
template void MoeFastHardamardWrapper<phi::dtype::bfloat16, int8_t>(
|
|
const phi::dtype::bfloat16 *x_data,
|
|
const int64_t *expert_idx_per_token,
|
|
const phi::dtype::bfloat16 *shift,
|
|
const phi::dtype::bfloat16 *smooth,
|
|
const float* quant_scales,
|
|
const int quant_round_type,
|
|
const float quant_max_bound,
|
|
const float quant_min_bound,
|
|
const int64_t token_num,
|
|
const int64_t dim,
|
|
int8_t *out,
|
|
cudaStream_t &stream
|
|
);
|