Files
FastDeploy/fastdeploy/worker/gpu_model_runner.py

3091 lines
148 KiB
Python
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import copy
import os
import queue
import time
from concurrent.futures import Future
from threading import Thread
from typing import List, Optional, cast
import numpy as np
import paddle
from paddle import nn
from paddleformers.utils.log import logger
from fastdeploy.config import FDConfig
from fastdeploy.engine.pooling_params import PoolingParams
from fastdeploy.engine.request import ImagePosition, Request, RequestType
from fastdeploy.model_executor.graph_optimization.utils import (
profile_run_guard,
sot_warmup_guard,
)
from fastdeploy.model_executor.guided_decoding import (
LogitsProcessorBase,
get_guided_backend,
)
from fastdeploy.model_executor.layers.attention import get_attention_backend
from fastdeploy.model_executor.layers.attention.append_attn_backend import (
allocate_launch_related_buffer,
)
from fastdeploy.model_executor.layers.attention.base_attention_backend import (
AttentionBackend,
)
from fastdeploy.model_executor.layers.moe.routing_indices_cache import (
RoutingReplayManager,
)
from fastdeploy.model_executor.layers.rotary_embedding import get_rope, get_rope_3d
from fastdeploy.model_executor.layers.sample.meta_data import SamplingMetadata
from fastdeploy.model_executor.layers.sample.sampler import Sampler, SpeculativeSampler
from fastdeploy.model_executor.model_loader import get_model_loader
from fastdeploy.platforms import current_platform
if current_platform.is_iluvatar():
from fastdeploy.model_executor.ops.iluvatar import (
recover_decode_task,
set_data_ipc,
set_value_by_flags_and_idx,
)
share_external_data = None
elif current_platform.is_dcu():
from fastdeploy.model_executor.ops.gpu import set_value_by_flags_and_idx
recover_decode_task = None
share_external_data = None
else:
from fastdeploy.model_executor.ops.gpu import (
recover_decode_task,
set_value_by_flags_and_idx,
share_external_data,
speculate_schedule_cache,
set_data_ipc,
)
from fastdeploy.model_executor.pre_and_post_process import (
post_process,
pre_process,
rebuild_padding,
step_cuda,
)
if not (current_platform.is_dcu() or current_platform.is_iluvatar()):
from fastdeploy.spec_decode import MTPProposer, NgramProposer
import zmq
from fastdeploy import envs
from fastdeploy.engine.tasks import PoolingTask
from fastdeploy.input.ernie4_5_vl_processor import DataProcessor
from fastdeploy.inter_communicator import IPCSignal, ZmqIpcClient
from fastdeploy.model_executor.forward_meta import ForwardMeta
from fastdeploy.model_executor.layers.pool.metadata import PoolingMetadata
from fastdeploy.model_executor.logits_processor import build_logits_processors
from fastdeploy.model_executor.models.ernie4_5_vl.modeling_resampler import ScatterOp
from fastdeploy.model_executor.models.interfaces_base import FdModelForPooling
from fastdeploy.output.pooler import PoolerOutput
from fastdeploy.worker.model_runner_base import (
DistributedOut,
DistributedStatus,
ModelRunnerBase,
)
from fastdeploy.worker.output import LogprobsTensors, ModelOutputData, ModelRunnerOutput
class GPUModelRunner(ModelRunnerBase):
def __init__(
self,
fd_config: FDConfig,
device: str, # logic device
device_id: int, # physical device id
rank: int,
local_rank: int,
):
super().__init__(fd_config=fd_config, device=device)
self.enable_mm = self.model_config.enable_mm
self.rank = rank
self.local_rank = local_rank
self.device_id = device_id
self.speculative_method = self.fd_config.speculative_config.method
self.speculative_decoding = self.speculative_method is not None
self.enable_logprob = fd_config.model_config.enable_logprob
self.enable_early_stop = self.fd_config.early_stop_config.enable_early_stop
self.is_pooling_model = self.fd_config.model_config.runner_type == "pooling"
self.ori_vocab_size = self.fd_config.model_config.ori_vocab_size
self.max_logprobs = None
if self.enable_logprob:
self.max_logprobs = (
self.ori_vocab_size
if fd_config.model_config.max_logprobs == -1
else fd_config.model_config.max_logprobs
)
self.temp_scaled_logprobs = True
self.top_p_normalized_logprobs = True
self.prompt_logprobs_reqs: dict[str, Request] = {}
self.in_progress_prompt_logprobs: dict[str, LogprobsTensors] = {}
self.forward_batch_reqs_list: list[Request] = [None for _ in range(self.scheduler_config.max_num_seqs)]
# VL model config:
if self.enable_mm:
if "ernie" in self.fd_config.model_config.model_type:
self._init_image_preprocess()
self.amp_black = [
"reduce_sum",
"c_softmax_with_cross_entropy",
"elementwise_div",
"sin",
"cos",
"sort",
"multinomial",
]
self.amp_white = [
"lookup_table",
"lookup_table_v2",
"flash_attn",
"matmul",
"matmul_v2",
"fused_gemm_epilogue",
]
if self.cache_config.max_encoder_cache > 0:
self.encoder_cache: dict[str, paddle.Tensor] = {}
else:
self.encoder_cache = None
# Sampler
if not self.speculative_decoding:
self.sampler = Sampler(fd_config)
else:
self.sampler = SpeculativeSampler(fd_config)
self.guided_backend = None
if self.fd_config.structured_outputs_config.guided_decoding_backend != "off":
self.guided_backend = get_guided_backend(fd_config=self.fd_config)
self.sampler.set_reasoning_parser(self.guided_backend.get_reasoning_parser())
# Lazy initialize kv cache after model loading
# self.kv_caches: list[paddle.Tensor] = []
# CUDA Graph
self.use_cudagraph = self.graph_opt_config.use_cudagraph
self.cudagraph_capture_sizes = list(reversed(self.graph_opt_config.cudagraph_capture_sizes))
self.sot_warmup_sizes = self.graph_opt_config.sot_warmup_sizes
self.cudagraph_only_prefill = self.graph_opt_config.cudagraph_only_prefill
# Initialize share inputs
self._init_share_inputs(self.scheduler_config.max_num_seqs)
increment_value = (
4 if not self.speculative_decoding else (self.speculative_config.num_speculative_tokens + 1) * 4
)
self.infer_seed_increment = paddle.full(
shape=[self.scheduler_config.max_num_seqs, 1],
fill_value=increment_value,
dtype="int64",
).cpu()
self.restore_chunked_prefill_request = dict()
# Initialize attention Backend
# NOTE(gonshaotian): Currently, all attention layers share one attention backend instance.
# In the future, we will expand it as a list.
self.attn_backends: list[AttentionBackend] = []
# self.attn_metadatas: list[AttentionMetadata] = []
self._initialize_attn_backend()
# Forward meta store the global meta information of the forward
self.forward_meta: ForwardMeta = None
# Postprocess Env params
os.environ["INFERENCE_MSG_QUEUE_ID"] = str(self.parallel_config.local_engine_worker_queue_port)
logger.info(f"queue id is {str(self.parallel_config.local_engine_worker_queue_port)}")
# Rollout routing replay config
self.routing_replay_manager = None
if self.fd_config.routing_replay_config.enable_routing_replay:
self.routing_replay_manager = RoutingReplayManager(fd_config=self.fd_config)
self.zmq_client = None
self.async_output_queue = None
if envs.FD_USE_GET_SAVE_OUTPUT_V1:
logger.info(f"zmq client get_save_output_rank{local_rank}")
self.zmq_client = ZmqIpcClient(name=f"get_save_output_rank{local_rank}", mode=zmq.PUSH)
self.zmq_client.connect()
self.zmq_client.socket.SNDTIMEO = 3000
self.async_output_queue: queue.Queue = queue.Queue()
self.async_output_copy_thread = Thread(
target=self._async_output_busy_loop,
daemon=True,
name="WorkerAsyncOutputCopy",
)
self.async_output_copy_thread.start()
def _async_output_busy_loop(self):
"""Entrypoint for the thread which handles outputs asynchronously."""
while True:
try:
output = self.async_output_queue.get()
self.zmq_client.send_pyobj(output)
except Exception as e:
logger.exception("Exception in async output loop: %s", e)
def exist_prefill(self):
"""
check whether prefill stage exist
"""
return np.any(self.share_inputs["seq_lens_encoder"].numpy() > 0)
def exist_decode(self):
"""
check whether decode stage exist
"""
return np.any(self.share_inputs["seq_lens_decoder"].numpy() > 0)
def only_prefill(self):
"""
check whether prefill only
"""
if_only_prefill = True
decode_exists = None
if self.fd_config.parallel_config.use_ep and self.fd_config.scheduler_config.splitwise_role == "mixed":
only_prefill_batch_list = []
decode_exists = self.exist_decode()
paddle.distributed.all_gather_object(only_prefill_batch_list, not decode_exists)
if_only_prefill = all(only_prefill_batch_list)
if_only_prefill = if_only_prefill and not (decode_exists if decode_exists is not None else self.exist_decode())
return if_only_prefill
def collect_distributed_status(self):
"""
Collect distributed status
"""
dist_status_list = []
dist_status_obj = DistributedStatus()
dist_out = DistributedOut()
prefill_exists = None
if_only_decode = True
# mix ep in single node
if self.fd_config.parallel_config.use_ep and self.fd_config.scheduler_config.splitwise_role == "mixed":
prefill_exists = self.exist_prefill()
dist_status_obj.only_decode = not prefill_exists
# whether chunked moe
if self.fd_config.parallel_config.enable_chunked_moe:
chunk_size = self.fd_config.parallel_config.chunked_moe_size
token_num = self.share_inputs["ids_remove_padding"].shape[0]
if token_num > chunk_size:
self.forward_meta.moe_num_chunk = (token_num + chunk_size - 1) // chunk_size
else:
self.forward_meta.moe_num_chunk = 1
dist_status_obj.moe_num_chunk = self.forward_meta.moe_num_chunk
# only ep need to collect and sync distributed status
if self.fd_config.parallel_config.use_ep and self.fd_config.scheduler_config.splitwise_role == "mixed":
# call once to gather all status
paddle.distributed.all_gather_object(dist_status_list, dist_status_obj)
# Update Batch type for cuda graph for if_only_decode
if_only_decode = all(dist_status.only_decode for dist_status in dist_status_list)
if_only_decode = if_only_decode and not (
prefill_exists if prefill_exists is not None else self.exist_prefill()
)
max_moe_num_chunk = None
if self.fd_config.parallel_config.enable_chunked_moe:
max_moe_num_chunk = max(dist_status.moe_num_chunk for dist_status in dist_status_list)
dist_out = DistributedOut(
if_only_decode=if_only_decode,
max_moe_num_chunk=max_moe_num_chunk,
)
return dist_out
def only_decode(self):
"""
check whether decode only
"""
# Update Batch type for cuda graph for if_only_decode
if_only_decode = True
prefill_exists = None
# mix ep in single node
if self.fd_config.parallel_config.use_ep and self.fd_config.scheduler_config.splitwise_role == "mixed":
only_decode_batch_list = []
prefill_exists = self.exist_prefill()
paddle.distributed.all_gather_object(only_decode_batch_list, not prefill_exists)
if_only_decode = all(only_decode_batch_list)
if_only_decode = if_only_decode and not (
prefill_exists if prefill_exists is not None else self.exist_prefill()
)
return if_only_decode
def _init_speculative_proposer(self):
"""
Init speculative proposer
"""
if self.speculative_method == "ngram":
self.proposer = NgramProposer(self.fd_config)
elif self.speculative_method == "mtp":
self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer
self.proposer = MTPProposer(
self.fd_config,
self.get_model(),
self.local_rank,
self.device_id,
self.share_inputs,
)
else:
self.proposer = None
def _init_logits_processor(self, request) -> tuple[Future[LogitsProcessorBase],]:
"""
init logits processor for guided decoding
"""
assert self.guided_backend is not None, (
"guided_backend is None, use " "--guided-decoding-backend to specify the backend at server startup."
)
if request.guided_json is not None:
schemata_key = ("json", request.guided_json)
elif request.guided_regex is not None:
schemata_key = ("regex", request.guided_regex)
elif request.guided_grammar is not None:
schemata_key = ("grammar", request.guided_grammar)
elif request.structural_tag is not None:
schemata_key = ("structural_tag", request.structural_tag)
return (
self.guided_backend.get_logits_processor(
schemata_key=schemata_key,
enable_thinking=False, # TODO cfg
),
schemata_key,
)
def _process_mm_features(self, request_list: List[Request]):
"""
Process and cache vision features from model
- add image_features, extract and cache vision features from model
- add rope_emb, rotate position embeddings
"""
if not self.enable_mm:
return
self.share_inputs["image_features"] = None
multi_vision_inputs = {
"images_lst": [],
"grid_thw_lst": [],
"vit_position_ids_lst": [],
"cu_seqlens": [0],
"encoder_cache_info": [],
"feature_position_list": [],
}
rope_3d_position_ids = {
"position_ids_idx": [],
"position_ids_lst": [],
"position_ids_offset": [0],
"max_tokens_lst": [],
}
for request in request_list:
if request.task_type.value != RequestType.PREFILL.value:
continue
if self.encoder_cache is not None:
evict_mm_hashes = request.get("evict_mm_hashes", None)
if evict_mm_hashes:
for mm_hash in evict_mm_hashes:
self.encoder_cache.pop(mm_hash, None)
position_ids = request.multimodal_inputs["position_ids"]
rope_3d_position_ids["position_ids_idx"].append(request.idx)
rope_3d_position_ids["position_ids_lst"].append(position_ids)
rope_3d_position_ids["position_ids_offset"].append(
position_ids.shape[0] + rope_3d_position_ids["position_ids_offset"][-1]
)
if self.is_pooling_model:
rope_3d_position_ids["max_tokens_lst"].append(0)
else:
rope_3d_position_ids["max_tokens_lst"].append(request.get("max_tokens", 2048))
if request.with_image:
inputs = request.multimodal_inputs
if self.encoder_cache is not None:
if envs.FD_ENABLE_MAX_PREFILL:
if "vit_seqlen" in inputs:
vit_seqlen_list = inputs["vit_seqlen"][request.num_image_start : request.num_image_end]
if "vit_position_ids" in inputs:
vit_position_ids_list = inputs["vit_position_ids"][
request.num_image_start : request.num_image_end
]
grid_thw_list = inputs["grid_thw"][request.num_image_start : request.num_image_end]
mm_hashes_list = inputs["mm_hashes"][request.num_image_start : request.num_image_end]
feature_positions = self._get_feature_positions(
mm_positions=inputs["mm_positions"][request.num_image_start : request.num_image_end],
prefill_start_index=request.prefill_start_index,
prefill_end_index=request.prefill_end_index,
)
image_start_idx = request.num_image_start
logger.debug(
f"request {request.request_id} start process encoder info, image_start_idx: {image_start_idx} "
f"grid_thw_list: {grid_thw_list}, feature_positions: {feature_positions}, mm_hashes_list: {mm_hashes_list}"
)
for i, mm_hash in enumerate(mm_hashes_list):
image_offset = np.prod(grid_thw_list[i])
logger.debug(
f"run idx {i} with mm_hash {mm_hash} image_offset: {image_offset} grid_thw: {grid_thw_list[i]}"
)
if mm_hash in self.encoder_cache:
multi_vision_inputs["encoder_cache_info"].append((mm_hash, feature_positions[i], True))
continue
multi_vision_inputs["encoder_cache_info"].append((mm_hash, feature_positions[i], False))
if envs.FD_ENABLE_MAX_PREFILL:
multi_vision_inputs["images_lst"].append(
inputs["images"][image_start_idx : image_start_idx + image_offset].to(self.device)
)
multi_vision_inputs["grid_thw_lst"].append(paddle.to_tensor(grid_thw_list[i]))
multi_vision_inputs["cu_seqlens"].append(vit_seqlen_list[i])
multi_vision_inputs["vit_position_ids_lst"].append(vit_position_ids_list[i])
else:
multi_vision_inputs["images_lst"].append(
paddle.to_tensor(
inputs["images"][image_start_idx : image_start_idx + image_offset],
dtype="uint8" if "ernie" in self.model_config.model_type else "bfloat16",
)
)
multi_vision_inputs["grid_thw_lst"].append(
paddle.to_tensor(grid_thw_list[i], dtype=paddle.int64)
)
image_start_idx += image_offset
else:
if envs.FD_ENABLE_MAX_PREFILL:
multi_vision_inputs["images_lst"].append(
inputs["images"][request.image_start : request.image_end].to(self.device)
)
multi_vision_inputs["grid_thw_lst"].extend(
paddle.to_tensor(inputs["grid_thw"][request.num_image_start : request.num_image_end])
)
multi_vision_inputs["cu_seqlens"].extend(
inputs["vit_seqlen"][request.num_image_start : request.num_image_end]
)
multi_vision_inputs["vit_position_ids_lst"].extend(
inputs["vit_position_ids"][request.num_image_start : request.num_image_end]
)
else:
multi_vision_inputs["images_lst"].append(
paddle.to_tensor(
inputs["images"][request.image_start : request.image_end],
dtype="uint8" if "ernie" in self.model_config.model_type else "bfloat16",
)
)
multi_vision_inputs["grid_thw_lst"].extend(
paddle.to_tensor(
inputs["grid_thw"][request.num_image_start : request.num_image_end],
dtype=paddle.int64,
)
)
multi_vision_inputs["feature_position_list"].extend(
self._get_feature_positions(
mm_positions=inputs["mm_positions"][request.num_image_start : request.num_image_end],
prefill_start_index=request.prefill_start_index,
prefill_end_index=request.prefill_end_index,
)
)
if self.encoder_cache is not None:
if len(multi_vision_inputs["images_lst"]) > 0 or len(multi_vision_inputs["encoder_cache_info"]) > 0:
image_features_output = None
if len(multi_vision_inputs["images_lst"]) > 0:
image_features_output = self.extract_vision_features(multi_vision_inputs)
logger.debug(f"encoder_cache_info: {multi_vision_inputs['encoder_cache_info']}")
merge_image_features, feature_idx, thw_idx = [], 0, 0
for mm_hash, feature_position, use_cache in multi_vision_inputs["encoder_cache_info"]:
if use_cache:
assert mm_hash in self.encoder_cache, f"{mm_hash} not in encoder cache"
mm_feature = self.encoder_cache[mm_hash].cuda()
else:
assert (
image_features_output is not None
), f"image_features_output is None, images_lst length: {len(multi_vision_inputs['images_lst'])}"
grid_thw = multi_vision_inputs["grid_thw_lst"][thw_idx]
mm_token_lenght = (grid_thw[1] * grid_thw[2]) // 4
mm_feature = image_features_output[feature_idx : feature_idx + mm_token_lenght]
# add feature to encoder cache
self.encoder_cache[mm_hash] = mm_feature.detach().cpu()
feature_idx += mm_token_lenght
thw_idx += 1
feature_start = feature_position.offset
feature_end = feature_position.offset + feature_position.length
merge_image_features.append(mm_feature[feature_start:feature_end])
self.share_inputs["image_features"] = paddle.concat(merge_image_features, axis=0)
logger.debug(
f"merge_image_features length: {len(merge_image_features)}, features shape: {self.share_inputs['image_features'].shape}"
)
elif len(multi_vision_inputs["images_lst"]) > 0:
assert len(multi_vision_inputs["feature_position_list"]) == len(
multi_vision_inputs["grid_thw_lst"]
), f"{multi_vision_inputs['feature_position_list']} != {multi_vision_inputs['grid_thw_lst']}"
merge_image_features, feature_idx, thw_idx = [], 0, 0
image_features_output = self.extract_vision_features(multi_vision_inputs)
for feature_position in multi_vision_inputs["feature_position_list"]:
grid_thw = multi_vision_inputs["grid_thw_lst"][thw_idx]
mm_token_lenght = (grid_thw[1] * grid_thw[2]) // 4
mm_feature = image_features_output[feature_idx : feature_idx + mm_token_lenght]
feature_start = feature_position.offset
feature_end = feature_position.offset + feature_position.length
merge_image_features.append(mm_feature[feature_start:feature_end])
feature_idx += mm_token_lenght
thw_idx += 1
self.share_inputs["image_features"] = paddle.concat(merge_image_features, axis=0)
if len(rope_3d_position_ids["position_ids_idx"]) > 0:
packed_position_ids = paddle.to_tensor(
np.concatenate(rope_3d_position_ids["position_ids_lst"]), dtype="int64"
)
rope_3d_lst = self.prepare_rope3d(
packed_position_ids,
rope_3d_position_ids["max_tokens_lst"],
rope_3d_position_ids["position_ids_offset"],
)
for i, idx in enumerate(rope_3d_position_ids["position_ids_idx"]):
self.share_inputs["rope_emb"][idx : idx + 1, :] = rope_3d_lst[i]
def _get_feature_positions(
self, mm_positions: List[ImagePosition], prefill_start_index: int, prefill_end_index: int
):
"""
Filter and adjust ImagePosition objects that fall within the specified prefill range.
Args:
mm_positions: List of ImagePosition objects to filter
prefill_start_index: Start index of the prefill range
prefill_end_index: End index of the prefill range
Returns:
List of ImagePosition objects that are within or intersect with the prefill range
"""
feature_positions = []
for position in mm_positions:
position_start = position.offset
position_end = position.offset + position.length
if position_end <= prefill_start_index or position_start >= prefill_end_index:
continue
elif position_start >= prefill_start_index and position_end <= prefill_end_index:
new_position = copy.deepcopy(position)
new_position.offset = 0
feature_positions.append(new_position)
else:
new_position = copy.deepcopy(position)
# Adjust offset if it starts before prefill_start_index
if position_start < prefill_start_index:
new_position.offset = prefill_start_index - position_start
new_position.length = min(position_end, prefill_end_index) - prefill_start_index
# Adjust length if it extends beyond prefill_end_index
elif position_end > prefill_end_index:
new_position.offset = 0
new_position.length = prefill_end_index - position_start
feature_positions.append(new_position)
logger.debug(
f"get feature_positions, original positions: {mm_positions}, filtered positions: {feature_positions}"
)
return feature_positions
def insert_tasks_v1(self, req_dicts: List[Request], num_running_requests: int = None):
"""
Process scheduler output tasks, used when ENABLE_V1_KVCACHE_SCHEDULER=1
req_dict: A list of Request dict
num_running_requests: batch_size
"""
# NOTE(luotingdan): Lazy initialize kv cache
if "caches" not in self.share_inputs:
self.initialize_kv_cache()
req_len = len(req_dicts)
has_prefill_task = False
has_decode_task = False
batch_pooling_params = []
for i in range(req_len):
request = req_dicts[i]
# assert isinstance(request, Request)
idx = request.idx
if hasattr(request, "pooling_params") and request.pooling_params is not None:
batch_pooling_params.append(request.pooling_params)
logits_info = None
prefill_tokens = []
if request.task_type.value == RequestType.PREFILL.value: # prefill task
# guided decoding
if (
request.guided_json is not None
or request.guided_regex is not None
or request.structural_tag is not None
or request.guided_grammar is not None
):
logits_info, schemata_key = self._init_logits_processor(request)
request.schemata_key = schemata_key
if (
self.scheduler_config.splitwise_role == "decode"
and hasattr(request, "prefill_end_index")
and hasattr(request, "prompt_token_ids")
and request.prefill_end_index > len(request.prompt_token_ids)
and hasattr(request, "output_token_ids")
):
prefill_tokens.extend(request.output_token_ids)
prefill_start_index = request.prefill_start_index
prefill_end_index = request.prefill_end_index
length = prefill_end_index - prefill_start_index
if not self.is_pooling_model:
if request.get("enable_thinking", False) and request.get("reasoning_max_tokens", None) is not None:
# Enable thinking
self.share_inputs["max_think_lens"][idx : idx + 1, :] = request.get("reasoning_max_tokens")
self.share_inputs["limit_think_status"][idx : idx + 1, :] = 0
else:
# Disable thinking
self.share_inputs["max_think_lens"][idx : idx + 1, :] = -1
self.share_inputs["limit_think_status"][idx : idx + 1, :] = 0
if isinstance(request.prompt_token_ids, np.ndarray):
prompt_token_ids = request.prompt_token_ids.tolist()
else:
prompt_token_ids = request.prompt_token_ids
input_ids = prompt_token_ids + request.output_token_ids
prompt_len = len(prompt_token_ids)
self.share_inputs["prompt_ids"][idx : idx + 1, :prompt_len] = np.array(prompt_token_ids, dtype="int64")
logger.debug(
f"Handle prefill request {request} at idx {idx}, "
f"{prefill_start_index=}, {prefill_end_index=}, "
f"need_prefilled_token_num={len(input_ids)}"
f"prompt_len={prompt_len}"
)
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(
input_ids[prefill_start_index:prefill_end_index]
)
encoder_block_num = len(request.block_tables)
self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
request.block_tables, dtype="int32"
)
self.share_inputs["stop_flags"][idx : idx + 1] = False
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = prefill_start_index
self.seq_lens_this_time_buffer[idx : idx + 1] = length
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = 0
self.share_inputs["prompt_lens"][idx : idx + 1] = len(input_ids)
self.share_inputs["is_block_step"][idx : idx + 1] = False
self.share_inputs["is_chunk_step"][idx : idx + 1] = prefill_end_index < len(input_ids)
self.share_inputs["step_idx"][idx : idx + 1] = (
len(request.output_token_ids) if prefill_end_index >= len(input_ids) else 0
)
self.share_inputs["pre_ids"][idx : idx + 1] = -1
# pooling model request.sampling_params is None
if request.sampling_params is not None and request.sampling_params.prompt_logprobs is not None:
self.prompt_logprobs_reqs[request.request_id] = request
self.forward_batch_reqs_list[idx] = request
has_prefill_task = True
# Routing Replay
if self.fd_config.routing_replay_config.enable_routing_replay:
if prefill_start_index == 0:
self.routing_replay_manager.register_request(batch_id=idx, request_id=request.request_id)
if (
self.fd_config.scheduler_config.splitwise_role == "decode"
): # In PD, we continue to decode after P generate first token
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
elif request.task_type.value == RequestType.DECODE.value: # decode task
logger.debug(f"Handle decode request {request} at idx {idx}")
encoder_block_num = len(request.block_tables)
self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
request.block_tables, dtype="int32"
)
if self.share_inputs["is_block_step"][idx]: # has tasks to continue to decode
has_decode_task = True
continue
else: # preempted task
logger.info(f"Handle preempted request {request} at idx {idx}")
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["stop_flags"][idx : idx + 1] = True
self.seq_lens_this_time_buffer[idx : idx + 1] = 0
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
self.share_inputs["is_block_step"][idx : idx + 1] = False
self.prompt_logprobs_reqs.pop(request.request_id, None)
self.in_progress_prompt_logprobs.pop(request.request_id, None)
self.forward_batch_reqs_list[idx] = None
# Routing Replay
if self.fd_config.routing_replay_config.enable_routing_replay:
self.routing_replay_manager.clear_request(batch_id=idx)
continue
assert len(request.eos_token_ids) == self.model_config.eos_tokens_lens
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx : idx + 1] = request.get("top_p", 0.7)
self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
self.share_inputs["top_k_list"][idx] = request.get("top_k", 0)
self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
self.share_inputs["min_p_list"][idx] = request.get("min_p", 0.0)
self.share_inputs["temperature"][idx : idx + 1] = request.get("temperature", 0.95)
self.share_inputs["penalty_score"][idx : idx + 1] = request.get("repetition_penalty", 1.0)
self.share_inputs["frequency_score"][idx : idx + 1] = request.get("frequency_penalty", 0.0)
self.share_inputs["presence_score"][idx : idx + 1] = request.get("presence_penalty", 0.0)
self.share_inputs["temp_scaled_logprobs"][idx : idx + 1] = request.get("temp_scaled_logprobs", False)
self.share_inputs["top_p_normalized_logprobs"][idx : idx + 1] = request.get(
"top_p_normalized_logprobs", False
)
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
"max_tokens", self.model_config.max_model_len
)
self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
if request.get("seed") is not None:
self.share_inputs["infer_seed"][idx : idx + 1] = request.get("seed")
if request.get("bad_words_token_ids") is not None and len(request.get("bad_words_token_ids")) > 0:
bad_words_len = len(request.get("bad_words_token_ids"))
self.share_inputs["bad_tokens_len"][idx] = bad_words_len
self.share_inputs["bad_tokens"][idx : idx + 1, :bad_words_len] = np.array(
request.get("bad_words_token_ids"), dtype="int64"
)
else:
self.share_inputs["bad_tokens_len"][idx] = 1
self.share_inputs["bad_tokens"][idx : idx + 1, :] = np.array([-1], dtype="int64")
if request.get("stop_token_ids") is not None and request.get("stop_seqs_len") is not None:
stop_seqs_num = len(request.get("stop_seqs_len"))
for i in range(stop_seqs_num, self.model_config.max_stop_seqs_num):
request.sampling_params.stop_seqs_len.append(0)
self.share_inputs["stop_seqs_len"][idx : idx + 1, :] = np.array(
request.sampling_params.stop_seqs_len, dtype="int32"
)
self.share_inputs["stop_seqs"][
idx : idx + 1, :stop_seqs_num, : len(request.get("stop_token_ids")[0])
] = np.array(request.get("stop_token_ids"), dtype="int64")
else:
self.share_inputs["stop_seqs_len"][idx : idx + 1, :] = 0
self.pooling_params = batch_pooling_params
# For logits processors
self.share_inputs["logits_processors_args"][idx] = request.get("logits_processors_args") or {}
self.sampler.apply_logits_processor(idx, logits_info, prefill_tokens)
self._process_mm_features(req_dicts)
if has_prefill_task or has_decode_task:
self.share_inputs["not_need_stop"][0] = True
self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer[:num_running_requests]
if self.speculative_method in ["mtp"]:
self.proposer.insert_tasks_v1(req_dicts, num_running_requests)
def insert_prefill_inputs(self, req_dicts: List[Request], num_running_requests: int = None):
"""
Process inputs for prefill tasks and insert it to share_inputs buffer
req_dict: A list of Request dict
num_running_requests: batch_size
TODO(gongshaotian): Refactor this func
"""
# NOTE(luotingdan): Set environment variable of prefill node
if req_dicts[-1].disaggregate_info is not None and req_dicts[-1].disaggregate_info["role"] == "prefill":
os.environ["PREFILL_NODE_ONE_STEP_STOP"] = "1"
req_len = len(req_dicts)
for i in range(req_len):
request = req_dicts[i]
idx = request.idx
length = len(request.prompt_token_ids)
assert length > 0, "The prompt requested must not be empty."
logits_info = None
prefill_tokens = []
if (
request.guided_json is not None
or request.guided_regex is not None
or request.structural_tag is not None
or request.guided_grammar is not None
):
logits_info, schemata_key = self._init_logits_processor(request)
request.schemata_key = schemata_key
# Is Decode Node
if req_dicts[i].disaggregate_info is not None and req_dicts[i].disaggregate_info["role"] == "decode":
prefill_tokens.append(request.prompt_token_ids[0])
self.share_inputs["pre_ids"][idx : idx + 1] = request.prompt_token_ids[-1]
self.share_inputs["input_ids"][idx : idx + 1, 0] = request.prompt_token_ids[0]
self.share_inputs["prompt_ids"][idx : idx + 1, :length] = np.array(request.prompt_token_ids)
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = length
self.seq_lens_this_time_buffer[idx : idx + 1] = 1
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = 0
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = length
self.share_inputs["prompt_lens"][idx : idx + 1] = length
self.share_inputs["step_idx"][idx : idx + 1] = 1
if self.speculative_decoding:
num_prefill_send_token = self.speculative_config.num_speculative_tokens + 1
self.share_inputs["draft_tokens"][idx : idx + 1, 0:num_prefill_send_token] = paddle.to_tensor(
request.draft_token_ids[0:num_prefill_send_token],
dtype="int64",
)
self.seq_lens_this_time_buffer[idx : idx + 1] = num_prefill_send_token
if self.enable_mm:
# Fix for V0 mode: Add position encoding for decode nodes in multimodal models
# to prevent garbled output. Position_ids are transmitted from prefill nodes.
if (
"position_ids" in request.multimodal_inputs
and request.multimodal_inputs["position_ids"] is not None
):
position_ids = paddle.to_tensor(
request.multimodal_inputs["position_ids"],
dtype="int64",
)
self.share_inputs["rope_emb"][idx : idx + 1, :] = self.prepare_rope3d(
position_ids, [request.get("max_tokens", 2048)], [0, position_ids.shape[0]]
)[0]
else:
self.share_inputs["pre_ids"][idx : idx + 1] = -1
self.share_inputs["step_idx"][idx : idx + 1] = 0
self.share_inputs["input_ids"][idx : idx + 1, :length] = np.array(request.prompt_token_ids)
self.share_inputs["prompt_ids"][idx : idx + 1, :length] = np.array(request.prompt_token_ids)
# Use chunked prefill
if self.cache_config.enable_chunked_prefill:
request.set("chunk_idx", 1)
logger.info(f"prefill_chunk_info: {request.prefill_chunk_info}")
token_chunk_size = request.prefill_chunk_info[0]
if self.enable_mm:
inputs = self._preprocess_mm_task(token_chunk_size)
if inputs.get("images") is not None:
self.share_inputs["image_features"] = self.extract_vision_features(inputs)
else:
# Compatible with the situation that lacks images and videos
self.share_inputs["image_features"] = None
if request.multimodal_inputs["position_ids"] is not None:
position_ids = paddle.to_tensor(
request.multimodal_inputs["position_ids"],
dtype="int64",
)
else:
position_ids = None
token_chunk_size = inputs["input_ids"].shape[1]
request.set("start_idx", token_chunk_size)
self.share_inputs["input_ids"][idx : idx + 1, :token_chunk_size] = inputs["input_ids"]
else:
self.share_inputs["input_ids"][idx, :token_chunk_size] = np.array(
request.prompt_token_ids[:token_chunk_size]
)
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
self.seq_lens_this_time_buffer[idx : idx + 1] = token_chunk_size
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = token_chunk_size
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = token_chunk_size
self.share_inputs["prompt_lens"][idx : idx + 1] = token_chunk_size
else:
if self.enable_mm:
inputs = self._preprocess_mm_task(request.multimodal_inputs)
if inputs.get("images") is not None:
self.share_inputs["image_features"] = self.extract_vision_features(inputs)
else:
# Compatible with the situation that lacks images and videos
self.share_inputs["image_features"] = None
position_ids = inputs["position_ids"]
length = inputs["input_ids"].shape[1]
self.share_inputs["input_ids"][idx : idx + 1, :length] = inputs["input_ids"]
else:
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
self.share_inputs["step_seq_lens_decoder"][idx : idx + 1] = request.get("seq_lens_decoder", 0)
self.seq_lens_this_time_buffer[idx : idx + 1] = length
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = length
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = length
self.share_inputs["prompt_lens"][idx : idx + 1] = length
if self.enable_mm:
self.share_inputs["rope_emb"][idx : idx + 1, :] = self.prepare_rope3d(
position_ids, [request.get("max_tokens", 2048)], [0, position_ids.shape[0]]
)[0]
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
if not self.is_pooling_model:
if request.get("enable_thinking", False) and request.get("reasoning_max_tokens", None) is not None:
# Enable thinking
self.share_inputs["max_think_lens"][idx : idx + 1, :] = request.get("reasoning_max_tokens")
self.share_inputs["limit_think_status"][idx : idx + 1, :] = 0
else:
# Disable thinking
self.share_inputs["max_think_lens"][idx : idx + 1, :] = -1
self.share_inputs["limit_think_status"][idx : idx + 1, :] = 0
def get_attr_from_request(request, attr, default_value=None):
res = request.get(attr, default_value)
if res is not None:
return res
else:
return default_value
assert len(request.eos_token_ids) == self.model_config.eos_tokens_lens
self.share_inputs["eos_token_id"][:] = np.array(request.eos_token_ids, dtype="int64").reshape(-1, 1)
self.share_inputs["top_p"][idx : idx + 1] = get_attr_from_request(request, "top_p", 0.7)
self.share_inputs["top_k"][idx : idx + 1] = request.get("top_k", 0)
self.share_inputs["top_k_list"][idx] = request.get("top_k", 0)
self.share_inputs["min_p"][idx : idx + 1] = request.get("min_p", 0.0)
self.share_inputs["min_p_list"][idx] = request.get("min_p", 0.0)
self.share_inputs["temperature"][idx : idx + 1] = get_attr_from_request(request, "temperature", 0.95)
self.share_inputs["penalty_score"][idx : idx + 1] = get_attr_from_request(
request, "repetition_penalty", 1.0
)
self.share_inputs["frequency_score"][idx : idx + 1] = get_attr_from_request(
request, "frequency_penalty", 0.0
)
self.share_inputs["presence_score"][idx : idx + 1] = get_attr_from_request(
request, "presence_penalty", 0.0
)
self.share_inputs["temp_scaled_logprobs"][idx : idx + 1] = get_attr_from_request(
request, "temp_scaled_logprobs", False
)
self.share_inputs["top_p_normalized_logprobs"][idx : idx + 1] = get_attr_from_request(
request, "top_p_normalized_logprobs", False
)
self.share_inputs["min_dec_len"][idx : idx + 1] = request.get("min_tokens", 1)
self.share_inputs["max_dec_len"][idx : idx + 1] = request.get(
"max_tokens", self.model_config.max_model_len
)
self.share_inputs["stop_flags"][idx : idx + 1] = False
self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
if request.get("seed") is not None:
self.share_inputs["infer_seed"][idx : idx + 1] = request.get("seed")
encoder_block_num = len(request.get("block_tables"))
self.share_inputs["encoder_block_lens"][idx : idx + 1] = encoder_block_num
self.share_inputs["block_tables"][idx : idx + 1, :] = -1
self.share_inputs["block_tables"][idx : idx + 1, :encoder_block_num] = np.array(
request.block_tables, dtype="int32"
)
if request.get("bad_words_token_ids") is not None and len(request.get("bad_words_token_ids")) > 0:
bad_words_len = len(request.get("bad_words_token_ids"))
self.share_inputs["bad_tokens_len"][idx] = bad_words_len
self.share_inputs["bad_tokens"][idx : idx + 1, :bad_words_len] = np.array(
request.get("bad_words_token_ids"), dtype="int64"
)
else:
self.share_inputs["bad_tokens_len"][idx] = 1
self.share_inputs["bad_tokens"][idx : idx + 1, :] = np.array([-1], dtype="int64")
if request.get("stop_token_ids") is not None and request.get("stop_seqs_len") is not None:
stop_seqs_num = len(request.get("stop_seqs_len"))
for i in range(stop_seqs_num, self.model_config.max_stop_seqs_num):
request.sampling_params.stop_seqs_len.append(0)
self.share_inputs["stop_seqs_len"][idx : idx + 1, :] = np.array(
request.sampling_params.stop_seqs_len, dtype="int32"
)
self.share_inputs["stop_seqs"][
idx : idx + 1, :stop_seqs_num, : len(request.get("stop_token_ids")[0])
] = np.array(request.get("stop_token_ids"), dtype="int64")
else:
self.share_inputs["stop_seqs_len"][idx : idx + 1, :] = 0
self.sampler.apply_logits_processor(idx, logits_info, prefill_tokens)
self.share_inputs["not_need_stop"][0] = True
self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer[:num_running_requests]
if self.speculative_method in ["mtp"]:
self.proposer.insert_prefill_inputs(req_dicts, num_running_requests)
def get_input_length_list(
self, num_tokens: int, batch_size: int, expected_decode_len: int, capture_prefill: bool = False
):
"""
Generates some list for _dummy_prefill_inputs, when capture pure prefill or mtp,
the list should be carefully constructed.
This function addresses a specific problem: in the pure prefill stage, variable
input lengths (e.g., `prompt[160, 0]` vs. `prompt[80, 80]`) can lead to different
CUDA Grid dimensions for kernels like `split_q_block`. This prevents CUDA Graph
reuse.
The `split_q_block` kernel calculates the total number of blocks, which directly
determines the `griddim.x` launch parameter for the `multi_query_append_attention_kernel`.
The blocks for a single sequence are determined by the formula:
`num_blocks = ceil((sequence_length * group_size) / block_shape_q)`
Due to the `ceil` (ceiling) function, distributing a total number of tokens across
a batch of shorter sequences will result in a larger total block count. For example,
with a `group_size` of 5 and `block_shape_q` of 64:
- A single sequence of 160 tokens requires `ceil((160 * 5) / 64) = 13` blocks.
- Two sequences of 80 tokens each require `ceil((80 * 5) / 64) * 2 = 7 * 2 = 14` blocks.
To ensure graph replayability, this function creates a "dummy" list of sequence
lengths that's designed to produce the theoretical maximum `encoder_num_blocks_x_cpu`
for the given `num_tokens` and `batch_size`. This strategy ensures the captured
CUDA Graph has the largest possible grid dimensions. At runtime, if the actual number
of blocks is less than or equal to this maximum, the kernel can safely execute by
using an early-exit mechanism.
Args:
num_tokens (int): The total number of tokens across all sequences.
batch_size (int): The number of sequences (requests) in the batch.
Returns:
List[int]: A list of integers representing the sequence length for each request.
This list is crafted to maximize the total number of blocks.
"""
# NOTE(gongshaotian): The maximum decoding length is equal to the expected decoded tokens plus the eos token
max_dec_len = expected_decode_len + 1
input_length = min(
num_tokens // (1 if capture_prefill else batch_size),
self.model_config.max_model_len - max_dec_len,
)
# NOTE(wanglongzhi): When the full length is too large, DeepEP's buffer size will not be enough to cause the result to appear nan.
# TODO(wanglongzhi): Figure out the accurate buffer size of DeepEP.
if self.fd_config.parallel_config.enable_expert_parallel:
input_length = min(input_length, 32)
block_num = (
input_length + self.cache_config.block_size - 1
) // self.cache_config.block_size + self.cache_config.enc_dec_block_num
input_length_list = [input_length] * batch_size
if capture_prefill:
if num_tokens < batch_size:
input_length_list = [1] * num_tokens
else:
input_length_list = [1] * (batch_size - 1)
input_length_list.append(num_tokens - batch_size + 1)
len_of_input_length_list = len(input_length_list)
max_dec_len_list = [max_dec_len] * len_of_input_length_list
return input_length_list, max_dec_len_list, block_num
def get_supported_pooling_tasks(self) -> list[PoolingTask]:
model = self.get_model()
if not self.is_pooling_model:
return []
supported_tasks = list(model.pooler.get_supported_tasks())
if self.cache_config.enable_chunked_prefill and "encode" in supported_tasks:
supported_tasks.remove("encode")
logger.debug(
"Chunked prefill is not supported with "
"encode task which using ALL pooling. "
"Please turn off chunked prefill by export=FD_DISABLE_CHUNKED_PREFILL=1 before using it."
)
# score not support
return supported_tasks
def _dummy_prefill_inputs(self, input_length_list: List[int], max_dec_len_list: List[int], block_num: int):
"""Set dummy prefill inputs to share_inputs"""
batch_size = len(input_length_list)
for i in range(batch_size):
idx = i
input_length = input_length_list[i]
max_dec_len = max_dec_len_list[i]
self.share_inputs["input_ids"][idx : idx + 1, :input_length] = np.array([5] * input_length)
self.share_inputs["prompt_ids"][idx : idx + 1, :input_length] = np.array([5] * input_length)
self.share_inputs["eos_token_id"][:] = np.array(
[2] * self.model_config.eos_tokens_lens, dtype="int64"
).reshape(-1, 1)
self.seq_lens_this_time_buffer[idx : idx + 1] = input_length
self.share_inputs["step_seq_lens_encoder"][idx : idx + 1] = input_length
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = input_length
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = 0
self.share_inputs["prompt_lens"][idx : idx + 1] = 0
self.share_inputs["step_idx"][idx : idx + 1] = 0
self.share_inputs["max_dec_len"][idx : idx + 1] = max_dec_len
self.share_inputs["min_dec_len"][idx : idx + 1] = max_dec_len
self.share_inputs["stop_flags"][idx : idx + 1] = False
self.share_inputs["temperature"][idx : idx + 1] = 1
self.share_inputs["first_token_ids"][idx : idx + 1] = self.share_inputs["input_ids"][idx : idx + 1, :1]
self.share_inputs["encoder_block_lens"][idx : idx + 1] = block_num
self.share_inputs["block_tables"][idx : idx + 1, :block_num] = np.arange(
idx * block_num, (idx + 1) * block_num, 1
)
self.share_inputs["seq_lens_this_time"] = self.seq_lens_this_time_buffer
def _init_share_inputs(self, max_num_seqs: int):
"""
Initialize all share buffers for model inputs.
"""
self.MAX_INFER_SEED = 9223372036854775806
self.share_inputs = {}
self.share_inputs["pre_ids"] = paddle.full(
[max_num_seqs, self.model_config.max_model_len],
-1,
dtype="int64",
)
self.share_inputs["input_ids"] = paddle.full(
[max_num_seqs, self.model_config.max_model_len],
self.model_config.pad_token_id,
dtype="int64",
)
self.share_inputs["prompt_ids"] = paddle.full(
[max_num_seqs, self.model_config.max_model_len],
self.model_config.pad_token_id,
dtype="int64",
)
self.share_inputs["eos_token_id"] = paddle.full([self.model_config.eos_tokens_lens, 1], 0, dtype="int64")
self.share_inputs["top_p"] = paddle.full([max_num_seqs, 1], self.model_config.top_p, dtype="float32")
self.share_inputs["top_k"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["top_k_list"] = [0] * max_num_seqs
self.share_inputs["min_p"] = paddle.full([max_num_seqs, 1], 0.0, dtype="float32")
self.share_inputs["min_p_list"] = [0.0] * max_num_seqs
self.share_inputs["temperature"] = paddle.full(
[max_num_seqs, 1], self.model_config.temperature, dtype="float32"
)
self.share_inputs["penalty_score"] = paddle.full(
[max_num_seqs, 1], self.model_config.penalty_score, dtype="float32"
)
self.share_inputs["frequency_score"] = paddle.full(
[max_num_seqs, 1],
self.model_config.frequency_score,
dtype="float32",
)
self.share_inputs["presence_score"] = paddle.full(
[max_num_seqs, 1], self.model_config.presence_score, dtype="float32"
)
self.share_inputs["temp_scaled_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype="bool")
self.share_inputs["top_p_normalized_logprobs"] = paddle.full([max_num_seqs, 1], False, dtype="bool")
self.share_inputs["min_dec_len"] = paddle.full([max_num_seqs, 1], self.model_config.min_length, dtype="int64")
self.share_inputs["max_dec_len"] = paddle.full(
[max_num_seqs, 1], self.model_config.max_model_len, dtype="int64"
)
self.seq_lens_this_time_buffer = paddle.full([max_num_seqs, 1], 0, dtype="int32")
if self.fd_config.parallel_config.enable_expert_parallel:
self.share_inputs["seq_lens_this_time"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["step_seq_lens_encoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["step_seq_lens_decoder"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["prompt_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["step_idx"] = paddle.full([max_num_seqs, 1], 0, dtype="int64")
self.share_inputs["not_need_stop"] = paddle.full([1], False, dtype="bool").cpu()
self.share_inputs["stop_flags"] = paddle.full([max_num_seqs, 1], True, dtype="bool")
self.share_inputs["stop_nums"] = paddle.full([1], max_num_seqs, dtype="int64")
self.share_inputs["bad_tokens"] = paddle.full([max_num_seqs, self.model_config.vocab_size], -1, dtype="int64")
self.share_inputs["bad_tokens_len"] = [-1] * max_num_seqs
self.share_inputs["next_tokens"] = paddle.full([max_num_seqs, 1], -1, dtype="int64")
self.share_inputs["is_block_step"] = paddle.full([max_num_seqs], False, dtype="bool")
self.share_inputs["is_chunk_step"] = paddle.full([max_num_seqs], False, dtype="bool").cpu()
self.share_inputs["encoder_block_lens"] = paddle.full([max_num_seqs], 0, dtype="int32")
self.share_inputs["step_block_list"] = paddle.full([max_num_seqs], -1, dtype="int32")
self.share_inputs["step_lens"] = paddle.full([1], 0, dtype="int32")
self.share_inputs["recover_block_list"] = paddle.full([max_num_seqs], -1, dtype="int32")
self.share_inputs["recover_lens"] = paddle.full([1], 0, dtype="int32")
self.share_inputs["need_block_list"] = paddle.full([max_num_seqs], -1, dtype="int32")
self.share_inputs["need_block_len"] = paddle.full([1], 0, dtype="int32")
self.share_inputs["used_list_len"] = paddle.full([max_num_seqs], 0, dtype="int32")
self.share_inputs["infer_seed"] = paddle.full([max_num_seqs, 1], 0, dtype="int64").cpu()
self.share_inputs["first_token_ids"] = paddle.full([max_num_seqs, 1], -1, dtype="int64")
self.share_inputs["system_lens"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
self.share_inputs["system_ids"] = paddle.full([max_num_seqs, 1], -1, dtype="int32")
self.share_inputs["ids_remove_padding"] = paddle.full(
[max_num_seqs * self.model_config.max_model_len],
0,
dtype="int64",
)
self.share_inputs["batch_id_per_token"] = paddle.full(
[max_num_seqs * self.model_config.max_model_len, 1], 0, dtype="int32"
)
self.share_inputs["cu_seqlens_q"] = paddle.full([max_num_seqs + 1, 1], 0, dtype="int32")
self.share_inputs["cu_seqlens_k"] = paddle.full([max_num_seqs + 1, 1], 0, dtype="int32")
# Declare AttentionBackend buffers
self.share_inputs["decoder_batch_ids"] = None
self.share_inputs["decoder_tile_ids_per_batch"] = None
self.share_inputs["decoder_num_blocks_cpu"] = None # Pinning Memory
self.share_inputs["decoder_num_blocks_device"] = None
self.share_inputs["decoder_chunk_size_device"] = None
self.share_inputs["max_len_tensor_cpu"] = None # CPU
self.share_inputs["encoder_batch_ids"] = None
self.share_inputs["encoder_tile_ids_per_batch"] = None
self.share_inputs["encoder_num_blocks_x_cpu"] = None # CPU
self.share_inputs["kv_batch_ids"] = None
self.share_inputs["kv_tile_ids_per_batch"] = None
self.share_inputs["kv_num_blocks_x_cpu"] = None # CPU
# Initialize thinking related buffers
self.share_inputs["max_think_lens"] = paddle.full(shape=[max_num_seqs, 1], fill_value=-1, dtype="int32")
self.share_inputs["limit_think_status"] = paddle.full(shape=[max_num_seqs, 1], fill_value=0, dtype="int32")
# Initialize rotary position embedding
if not self.enable_mm:
self.share_inputs["rope_emb"] = get_rope(
rotary_dim=self.model_config.head_dim,
position_ids=paddle.arange(self.model_config.max_model_len).reshape((1, -1)),
base=self.model_config.rope_theta,
model_config=self.model_config,
partial_rotary_factor=self.model_config.partial_rotary_factor,
)
# Set block tables
pre_max_block_num = (
self.model_config.max_model_len + self.cache_config.block_size - 1
) // self.cache_config.block_size + self.cache_config.enc_dec_block_num
self.share_inputs["block_tables"] = paddle.full([max_num_seqs, pre_max_block_num], -1, dtype="int32")
# Initialize free list
free_list = list(
range(
self.cache_config.total_block_num - 1,
int(self.cache_config.total_block_num * self.cache_config.kv_cache_ratio) - 1,
-1,
)
)
self.free_list_len = len(free_list)
self.share_inputs["free_list"] = paddle.to_tensor(free_list, dtype="int32")
self.share_inputs["free_list_len"] = paddle.full([1], self.free_list_len, dtype="int32")
# Initialize stop seqs
self.share_inputs["stop_seqs_len"] = paddle.full(
[max_num_seqs, self.model_config.max_stop_seqs_num], 0, dtype="int32"
)
self.share_inputs["stop_seqs"] = paddle.full(
[
max_num_seqs,
self.model_config.max_stop_seqs_num,
self.model_config.stop_seqs_max_len,
],
-1,
dtype="int64",
)
if self.speculative_decoding:
max_draft_token_num = self.speculative_config.num_speculative_tokens
self.share_inputs["input_ids_cpu"] = paddle.full(
shape=[max_num_seqs, self.model_config.max_model_len],
fill_value=1,
dtype="int64",
).cpu()
self.share_inputs["accept_tokens"] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1],
fill_value=0,
dtype="int64",
)
self.share_inputs["accept_num"] = paddle.full(shape=[max_num_seqs], fill_value=0, dtype="int32")
self.share_inputs["draft_tokens"] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1],
fill_value=0,
dtype="int64",
)
self.share_inputs["actual_draft_token_num"] = paddle.full(
shape=[max_num_seqs],
fill_value=max_draft_token_num,
dtype="int32",
)
self.share_inputs["output_cum_offsets"] = paddle.full(shape=[max_num_seqs, 1], fill_value=0, dtype="int32")
self.share_inputs["output_padding_offset"] = paddle.full(
shape=[max_num_seqs * (max_draft_token_num + 1)],
fill_value=0,
dtype="int32",
)
# For V1_KVCACHE_SCHEDULER
self.share_inputs["step_draft_tokens"] = paddle.full(
shape=[max_num_seqs, max_draft_token_num + 1],
fill_value=0,
dtype="int64",
)
self.share_inputs["step_seq_lens_this_time"] = paddle.full([max_num_seqs, 1], 0, dtype="int32")
# For MTP Logprob
self.share_inputs["draft_logits"] = paddle.full(
[max_num_seqs * (self.speculative_config.num_speculative_tokens + 1), self.model_config.vocab_size],
-1,
dtype="float32",
)
self.share_inputs["cu_batch_token_offset"] = paddle.full(
shape=[max_num_seqs + 1], fill_value=0, dtype="int32"
)
if self.enable_mm:
head_dim = self.model_config.head_dim
if (
"qwen" in self.model_config.model_type or "paddleocr" in self.model_config.model_type
): # neox style = True
rope_head_dim = head_dim
else: # neox style = False
rope_head_dim = head_dim // 2
self.share_inputs["rope_emb"] = paddle.full(
shape=[
max_num_seqs,
2,
1,
self.model_config.max_model_len,
1,
rope_head_dim,
],
fill_value=0,
dtype="float32",
)
self.share_inputs["image_features"] = None
# For logits processors
self.share_inputs["logits_processors"] = build_logits_processors(self.fd_config)
self.share_inputs["logits_processors_args"] = [{} for _ in range(max_num_seqs)]
logger.info(f"Enabled logits processors: {self.share_inputs['logits_processors']}")
self.share_inputs["mask_rollback"] = paddle.full(shape=[max_num_seqs, 1], fill_value=0, dtype="int32")
def _prepare_inputs(self, is_dummy_or_profile_run=False) -> None:
"""Prepare the model inputs"""
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
recover_decode_task(
self.share_inputs["stop_flags"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["step_seq_lens_decoder"],
self.share_inputs["block_tables"],
self.share_inputs["is_block_step"],
self.share_inputs["draft_tokens"] if self.speculative_decoding else None,
self.share_inputs["step_draft_tokens"] if self.speculative_decoding else None,
self.share_inputs["step_seq_lens_this_time"] if self.speculative_decoding else None,
self.cache_config.block_size,
self.speculative_config.num_speculative_tokens if self.speculative_decoding else 0,
)
logprobs_reqs = [
req
for req in self.forward_batch_reqs_list
if req is not None and req.sampling_params is not None and req.sampling_params.logprobs is not None
]
if len(logprobs_reqs):
self.max_logprobs = max(
[
self.ori_vocab_size if req.sampling_params.logprobs < 0 else req.sampling_params.logprobs
for req in logprobs_reqs
]
)
self.temp_scaled_logprobs = any(req.sampling_params.temp_scaled_logprobs for req in logprobs_reqs)
self.top_p_normalized_logprobs = any(
req.sampling_params.top_p_normalized_logprobs for req in logprobs_reqs
)
elif self.enable_logprob:
self.max_logprobs = None if not self.speculative_decoding else 0
# Remove padding
(
ids_remove_padding,
batch_id_per_token,
cu_seqlens_q,
cu_seqlens_k,
output_cum_offsets,
output_padding_offset,
) = pre_process(
self.share_inputs["input_ids"],
self.share_inputs["seq_lens_this_time"],
self.speculative_decoding,
(self.share_inputs["draft_tokens"] if self.speculative_decoding else None),
self.share_inputs["seq_lens_encoder"],
self.share_inputs["seq_lens_decoder"],
)
self.share_inputs["ids_remove_padding"].copy_(ids_remove_padding, False)
# NOTE: (changwenbin) Initialized to max_num_seq '-1' before copying, marking illegal positions
self.share_inputs["batch_id_per_token"][:] = -1
self.share_inputs["batch_id_per_token"].copy_(batch_id_per_token, False)
self.share_inputs["cu_seqlens_q"].copy_(cu_seqlens_q, False)
self.share_inputs["cu_seqlens_k"].copy_(cu_seqlens_k, False)
# For speculative decoding
if self.speculative_decoding:
self.share_inputs["output_cum_offsets"].copy_(output_cum_offsets, False)
self.share_inputs["output_padding_offset"].copy_(output_padding_offset, False)
# Update bad tokens len
max_bad_tokens_len = max(self.share_inputs["bad_tokens_len"])
# Initialize forward meta data
self.initialize_forward_meta(is_dummy_or_profile_run=is_dummy_or_profile_run)
# Get sampling metadata
self.sampling_metadata = SamplingMetadata(
temperature=self.share_inputs["temperature"],
top_p=self.share_inputs["top_p"],
top_k=self.share_inputs["top_k"],
top_k_list=self.share_inputs["top_k_list"],
min_p=self.share_inputs["min_p"],
min_p_list=self.share_inputs["min_p_list"],
seed=self.share_inputs["infer_seed"],
step_idx=self.share_inputs["step_idx"],
pre_token_ids=self.share_inputs["pre_ids"],
prompt_ids=self.share_inputs["prompt_ids"],
prompt_lens=self.share_inputs["prompt_lens"],
frequency_penalties=self.share_inputs["frequency_score"],
presence_penalties=self.share_inputs["presence_score"],
repetition_penalties=self.share_inputs["penalty_score"],
min_dec_lens=self.share_inputs["min_dec_len"],
bad_words_token_ids=self.share_inputs["bad_tokens"][:, :max_bad_tokens_len],
eos_token_ids=self.share_inputs["eos_token_id"],
max_num_logprobs=self.max_logprobs,
enable_early_stop=self.enable_early_stop,
stop_flags=self.share_inputs["stop_flags"],
temp_scaled_logprobs_flag=self.temp_scaled_logprobs,
top_p_normalized_logprobs_flag=self.top_p_normalized_logprobs,
temp_scaled_logprobs=self.share_inputs["temp_scaled_logprobs"],
top_p_normalized_logprobs=self.share_inputs["top_p_normalized_logprobs"],
logits_processors=self.share_inputs["logits_processors"],
share_inputs=self.share_inputs,
)
def load_model(self) -> None:
"""load or download model"""
logger.info(f"Starting to load model {self.model_config.architectures[0]}")
# 1. Load original model
model_loader = get_model_loader(load_config=self.fd_config.load_config)
self.model = model_loader.load_model(fd_config=self.fd_config)
# 1.1 Load RL dynamic model
if self.fd_config.load_config.dynamic_load_weight:
from fastdeploy.rl.dynamic_weight_manager import DynamicWeightManager
self.dynamic_weight_manager = DynamicWeightManager(self.fd_config, self.model)
# 2. Load lora model
# 3. Load drafter model(for speculative decoding)
# 4. Init proposer for speculative method
self._init_speculative_proposer()
def get_model(self) -> nn.Layer:
"""Get current model"""
return self.model
def initialize_forward_meta(self, is_dummy_or_profile_run=False):
"""
Initialize forward meta, attention meta data and update some config.
"""
# Initialize forward meta
routing_replay_table = None
if self.routing_replay_manager is not None:
routing_replay_table = self.routing_replay_manager.get_routing_table()
self.forward_meta = ForwardMeta(
ids_remove_padding=self.share_inputs["ids_remove_padding"],
rotary_embs=self.share_inputs["rope_emb"],
attn_backend=self.attn_backends[0],
decoder_batch_ids=self.share_inputs["decoder_batch_ids"],
decoder_tile_ids_per_batch=self.share_inputs["decoder_tile_ids_per_batch"],
decoder_num_blocks_cpu=self.share_inputs["decoder_num_blocks_cpu"],
# NOTE: (changwenbin) MLA kernel only needs decoder_num_blocks_device in place of GPU tensor,
# adapted to cudagraph.
decoder_num_blocks_device=self.share_inputs["decoder_num_blocks_device"],
decoder_chunk_size_device=self.share_inputs["decoder_chunk_size_device"],
max_len_tensor_cpu=self.share_inputs["max_len_tensor_cpu"],
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
batch_id_per_token=self.share_inputs["batch_id_per_token"],
cu_seqlens_q=self.share_inputs["cu_seqlens_q"],
cu_seqlens_k=self.share_inputs["cu_seqlens_k"],
block_tables=self.share_inputs["block_tables"],
caches=self.share_inputs["caches"],
encoder_batch_ids=self.share_inputs["encoder_batch_ids"],
encoder_tile_ids_per_batch=self.share_inputs["encoder_tile_ids_per_batch"],
encoder_num_blocks_x_cpu=self.share_inputs["encoder_num_blocks_x_cpu"],
kv_batch_ids=self.share_inputs["kv_batch_ids"],
kv_tile_ids_per_batch=self.share_inputs["kv_tile_ids_per_batch"],
kv_num_blocks_x_cpu=self.share_inputs["kv_num_blocks_x_cpu"],
routing_replay_table=routing_replay_table,
)
dist_status = self.collect_distributed_status()
if_only_decode = dist_status.if_only_decode
if self.fd_config.parallel_config.enable_chunked_moe:
self.forward_meta.max_moe_num_chunk = dist_status.max_moe_num_chunk
only_decode_use_cudagraph = self.use_cudagraph and if_only_decode
# Update config about moe for better performance
# TODO(wanglongzhi):Modifying the config at runtime is not appropriate; it needs to be moved to forward_meta. It will be used in MoEMethodBase.apply()
if self.fd_config.parallel_config.use_ep and self.fd_config.scheduler_config.splitwise_role == "mixed":
self.fd_config.model_config.moe_phase.phase = "decode" if if_only_decode else "prefill"
if self.speculative_decoding:
self.proposer.fd_config.parallel_config.moe_phase.phase = "decode" if if_only_decode else "prefill"
# Update Batch type for cuda graph for only_prefill_batch
only_prefill_use_cudagraph = self.use_cudagraph and self.cudagraph_only_prefill and self.only_prefill()
# When support capture both prefill-only and decode-only, this will use [only_prefill_use_cudagraph or only_decode_use_cudagraph]
self.forward_meta.step_use_cudagraph = (
only_prefill_use_cudagraph
if self.cudagraph_only_prefill
else only_decode_use_cudagraph and self.forward_meta.ids_remove_padding.shape[0] > 0
)
# Set forward_meta.is_dummy_or_profile_run to True to skip init_kv_signal_per_query for attention backends
self.forward_meta.is_dummy_or_profile_run = is_dummy_or_profile_run
# Initialzie attention meta data
for attn_backend in self.attn_backends:
attn_backend.init_attention_metadata(self.forward_meta)
# for zero size
self.forward_meta.is_zero_size = self.forward_meta.ids_remove_padding.shape[0] == 0
def initialize_kv_cache(self, profile: bool = False) -> None:
"""
Initialize kv cache
"""
# cache_kvs = {}
max_block_num = self.num_gpu_blocks
# Get kv cache dtype
cache_type = self.model_config.dtype
kv_cache_quant_type = None
if (
self.quant_config
and hasattr(self.quant_config, "kv_cache_quant_type")
and self.quant_config.kv_cache_quant_type is not None
):
cache_type = "uint8"
kv_cache_quant_type = self.quant_config.kv_cache_quant_type
# Get kv cache shape
key_cache_shape, value_cache_shape = self.attn_backends[0].get_kv_cache_shape(
max_num_blocks=max_block_num, kv_cache_quant_type=kv_cache_quant_type
)
if kv_cache_quant_type == "block_wise_fp8":
kv_cache_scale_shape = [key_cache_shape[0], key_cache_shape[1], key_cache_shape[2]]
local_rank = self.local_rank % self.parallel_config.tensor_parallel_size
cache_ready_signal_data = np.zeros(shape=[self.parallel_config.tensor_parallel_size], dtype=np.int32)
cache_ready_signal = IPCSignal(
name="cache_ready_signal",
array=cache_ready_signal_data,
dtype=np.int32,
suffix=self.parallel_config.local_engine_worker_queue_port,
create=False,
)
# Check if gpu runner needs to create kv cache
# 1. During profiling, it creates its own kv cache.
# 2. GPU runner creates kv cache tensor unless p/d disaggregation is enabled.
create_cache_tensor = profile or self.scheduler_config.splitwise_role == "mixed"
if not create_cache_tensor:
logger.info(f"Waiting for cache managers to create kv cache.. {cache_ready_signal.value}")
while cache_ready_signal.value[local_rank] != 1:
time.sleep(1)
logger.info(f"OK! Stop waiting. {cache_ready_signal.value}")
logger.info(f"Initializing kv cache for all layers. {cache_ready_signal.value}")
cache_kvs_list = []
# NOTE:(changwenbin) Determine whether it is Multi-Head Latent Attention,
# To rationalize the allocation of kvcache.
from fastdeploy import envs
self.mla_cache = envs.FD_ATTENTION_BACKEND == "MLA_ATTN"
for i in range(self.model_config.num_hidden_layers):
# init key cache
key_cache_name = f"key_caches_{i}_rank{local_rank}.device{self.device_id}"
key_cache_scales_name = f"key_cache_scales_{i}_rank{local_rank}.device{self.device}"
if value_cache_shape:
val_cache_name = f"value_caches_{i}_rank{local_rank}.device{self.device_id}"
value_cache_scales_name = f"value_cache_scales_{i}_rank{local_rank}.device{self.device}"
if create_cache_tensor:
logger.info(f"..creating kv cache for layer {i}: key:{key_cache_shape}, value:{value_cache_shape}")
key_cache = paddle.full(shape=key_cache_shape, fill_value=0, dtype=cache_type)
set_data_ipc(key_cache, key_cache_name)
if value_cache_shape:
val_cache = paddle.full(shape=value_cache_shape, fill_value=0, dtype=cache_type)
set_data_ipc(val_cache, val_cache_name)
cache_kvs_list.extend([key_cache, val_cache])
else:
cache_kvs_list.extend([key_cache])
if kv_cache_quant_type == "block_wise_fp8":
key_cache_scales = paddle.full(
shape=kv_cache_scale_shape, fill_value=0, dtype=paddle.get_default_dtype()
)
if value_cache_shape:
val_cache_scales = paddle.full(
shape=kv_cache_scale_shape, fill_value=0, dtype=paddle.get_default_dtype()
)
cache_kvs_list.extend([key_cache_scales, val_cache_scales])
else:
cache_kvs_list.extend([key_cache_scales])
else:
logger.info(f"..attaching kv cache for layer {i}: key:{key_cache_shape}, value:{value_cache_shape}")
key_cache = paddle.empty(shape=[], dtype=cache_type)
key_cache = share_external_data(key_cache, key_cache_name, key_cache_shape)
if kv_cache_quant_type == "block_wise_fp8":
key_cache_scales = paddle.empty(shape=[], dtype=paddle.get_default_dtype())
key_cache_scales = share_external_data(
key_cache_scales, key_cache_scales_name, kv_cache_scale_shape
)
if value_cache_shape:
val_cache = paddle.empty(shape=[], dtype=cache_type)
val_cache = share_external_data(val_cache, val_cache_name, value_cache_shape)
cache_kvs_list.extend([key_cache, val_cache])
if kv_cache_quant_type == "block_wise_fp8":
val_cache_scales = paddle.empty(shape=[], dtype=paddle.get_default_dtype())
val_cache_scales = share_external_data(
val_cache_scales, value_cache_scales_name, kv_cache_scale_shape
)
cache_kvs_list.extend([key_cache_scales, val_cache_scales])
else:
cache_kvs_list.extend([key_cache])
if kv_cache_quant_type == "block_wise_fp8":
cache_kvs_list.extend([key_cache_scales])
self.share_inputs["caches"] = cache_kvs_list
if not profile and create_cache_tensor:
cache_ready_signal.value[local_rank] = 1
logger.info(f"✅ kv cache is ready! {cache_ready_signal.value}")
paddle.device.cuda.empty_cache()
logger.info("kv cache is initialized!")
def _initialize_attn_backend(self) -> None:
"""
Initialize attention backends
"""
assert len(self.attn_backends) == 0
num_heads = self.model_config.num_attention_heads // self.parallel_config.tensor_parallel_size
self.model_config.kv_num_heads = max(
1,
int(self.model_config.num_key_value_heads) // self.parallel_config.tensor_parallel_size,
)
head_dim = self.model_config.head_dim
encoder_block_shape_q = 64
decoder_block_shape_q = 16
res_buffer = allocate_launch_related_buffer(
max_batch_size=self.scheduler_config.max_num_seqs,
max_model_len=self.model_config.max_model_len,
encoder_block_shape_q=encoder_block_shape_q,
decoder_block_shape_q=decoder_block_shape_q,
decoder_step_token_num=self.speculative_config.num_speculative_tokens + 1,
num_heads=num_heads,
kv_num_heads=self.model_config.kv_num_heads,
block_size=self.fd_config.cache_config.block_size,
)
self.share_inputs.update(res_buffer)
# Get the attention backend
attn_cls = get_attention_backend()
attn_backend = attn_cls(
self.fd_config,
kv_num_heads=self.model_config.kv_num_heads,
num_heads=num_heads,
head_dim=head_dim,
encoder_block_shape_q=encoder_block_shape_q,
decoder_block_shape_q=decoder_block_shape_q,
)
self.attn_backends.append(attn_backend)
def _dummy_pooler_run_task(
self,
hidden_states: paddle.Tensor,
task: PoolingTask,
) -> PoolerOutput:
num_tokens = hidden_states.shape[0]
max_num_seqs = self.scheduler_config.max_num_seqs
num_reqs = min(num_tokens, max_num_seqs)
min_tokens_per_req = num_tokens // num_reqs
num_scheduled_tokens_list = [min_tokens_per_req] * num_reqs
num_scheduled_tokens_list[-1] += num_tokens % num_reqs
assert sum(num_scheduled_tokens_list) == num_tokens
assert len(num_scheduled_tokens_list) == num_reqs
req_num_tokens = num_tokens // num_reqs
dummy_prompt_lens = paddle.to_tensor(num_scheduled_tokens_list, dtype="int64", place=paddle.CPUPlace())
dummy_token_ids = paddle.zeros([num_reqs, req_num_tokens], dtype="int64", device=hidden_states.place)
model = cast(FdModelForPooling, self.get_model())
dummy_pooling_params = PoolingParams(task=task)
to_update = model.pooler.get_pooling_updates(task)
to_update.apply(dummy_pooling_params)
dummy_metadata = PoolingMetadata(
prompt_lens=dummy_prompt_lens,
prompt_token_ids=dummy_token_ids,
pooling_params=[dummy_pooling_params] * num_reqs,
)
dummy_metadata.build_pooling_cursor(num_scheduled_tokens_list, device=hidden_states.place)
try:
return model.pooler(hidden_states=hidden_states, pooling_metadata=dummy_metadata)
except RuntimeError as e:
if "out of memory" in str(e):
raise RuntimeError(
"CUDA out of memory occurred when warming up pooler "
f"({task=}) with {num_reqs} dummy requests. Please try "
"lowering `max_num_seqs` or `gpu_memory_utilization` when "
"initializing the engine."
) from e
else:
raise e
def _dummy_pooler_run(
self,
hidden_states: paddle.Tensor,
model_output: paddle.Tensor,
) -> PoolerOutput:
output_size = dict[PoolingTask, float]()
for task in self.get_supported_pooling_tasks():
output = self._dummy_pooler_run_task(hidden_states, task)
output_size[task] = sum(o.numel() * o.element_size() if hasattr(o, "numel") else 0 for o in output)
del output
max_task = max(output_size.items(), key=lambda x: x[1])[0]
pooler_output = self._dummy_pooler_run_task(hidden_states, max_task)
model_output_data = ModelOutputData(
next_tokens=self.share_inputs["next_tokens"],
stop_flags=self.share_inputs["stop_flags"],
step_idx=self.share_inputs["step_idx"],
max_dec_len=self.share_inputs["max_dec_len"],
pre_ids=self.share_inputs["pre_ids"],
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
eos_token_id=self.share_inputs["eos_token_id"],
not_need_stop=self.share_inputs["not_need_stop"],
input_ids=self.share_inputs["input_ids"],
stop_nums=self.share_inputs["stop_nums"],
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
is_block_step=self.share_inputs["is_block_step"],
full_hidden_states=model_output,
msg_queue_id=self.parallel_config.msg_queue_id,
mp_rank=self.parallel_config.tensor_parallel_rank,
use_ep=self.parallel_config.use_ep,
draft_tokens=(self.share_inputs["draft_tokens"] if self.speculative_decoding else None),
actual_draft_token_num=(
self.share_inputs["actual_draft_token_num"] if self.speculative_decoding else None
),
accept_tokens=(self.share_inputs["accept_tokens"] if self.speculative_decoding else None),
accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None),
stop_token_ids=self.share_inputs["stop_seqs"],
stop_seqs_len=self.share_inputs["stop_seqs_len"],
min_tokens=self.share_inputs["min_dec_len"],
prompt_lens=self.share_inputs["prompt_lens"],
)
post_process(
sampler_or_pooler_output=pooler_output,
model_output=model_output_data,
share_inputs=self.share_inputs,
block_size=self.cache_config.block_size,
speculative_decoding=self.speculative_decoding,
skip_save_output=True,
async_output_queue=self.async_output_queue,
think_end_id=self.model_config.think_end_id,
line_break_id=self.model_config.line_break_id,
)
return pooler_output
def _dummy_sampler_run(
self,
hidden_states: paddle.Tensor,
model_output: paddle.Tensor,
accept_all_drafts=False,
reject_all_drafts=False,
) -> paddle.Tensor:
logits = self.model.compute_logits(hidden_states)
if not self.speculative_decoding:
set_value_by_flags_and_idx(
self.share_inputs["pre_ids"],
self.share_inputs["input_ids"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["step_idx"],
self.share_inputs["stop_flags"],
)
sampler_output = self.sampler(logits, self.sampling_metadata)
if self.parallel_config.tensor_parallel_size > 1:
paddle.distributed.broadcast(
sampler_output.sampled_token_ids,
self.parallel_config.data_parallel_rank * self.parallel_config.tensor_parallel_size,
group=self.parallel_config.tp_group,
)
else:
self.sampler(
logits,
self.sampling_metadata,
self.model_config.max_model_len,
self.share_inputs,
accept_all_drafts,
reject_all_drafts,
)
sampler_output = None
if self.parallel_config.tensor_parallel_size > 1:
paddle.distributed.broadcast(
self.share_inputs["accept_tokens"],
self.parallel_config.data_parallel_rank * self.parallel_config.tensor_parallel_size,
group=self.parallel_config.tp_group,
)
paddle.distributed.broadcast(
self.share_inputs["accept_num"],
self.parallel_config.data_parallel_rank * self.parallel_config.tensor_parallel_size,
group=self.parallel_config.tp_group,
)
paddle.distributed.broadcast(
self.share_inputs["step_idx"],
self.parallel_config.data_parallel_rank * self.parallel_config.tensor_parallel_size,
group=self.parallel_config.tp_group,
)
paddle.distributed.broadcast(
self.share_inputs["stop_flags"],
self.parallel_config.data_parallel_rank * self.parallel_config.tensor_parallel_size,
group=self.parallel_config.tp_group,
)
# 5. post process
model_output_data = ModelOutputData(
next_tokens=self.share_inputs["next_tokens"],
stop_flags=self.share_inputs["stop_flags"],
step_idx=self.share_inputs["step_idx"],
max_dec_len=self.share_inputs["max_dec_len"],
pre_ids=self.share_inputs["pre_ids"],
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
eos_token_id=self.share_inputs["eos_token_id"],
not_need_stop=self.share_inputs["not_need_stop"],
input_ids=self.share_inputs["input_ids"],
stop_nums=self.share_inputs["stop_nums"],
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
is_block_step=self.share_inputs["is_block_step"],
full_hidden_states=model_output,
msg_queue_id=self.parallel_config.msg_queue_id,
mp_rank=self.parallel_config.tensor_parallel_rank,
use_ep=self.parallel_config.use_ep,
draft_tokens=(self.share_inputs["draft_tokens"] if self.speculative_decoding else None),
actual_draft_token_num=(
self.share_inputs["actual_draft_token_num"] if self.speculative_decoding else None
),
accept_tokens=(self.share_inputs["accept_tokens"] if self.speculative_decoding else None),
accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None),
stop_token_ids=self.share_inputs["stop_seqs"],
stop_seqs_len=self.share_inputs["stop_seqs_len"],
min_tokens=self.share_inputs["min_dec_len"],
prompt_lens=self.share_inputs["prompt_lens"],
mask_rollback=self.share_inputs["mask_rollback"],
)
post_process(
sampler_or_pooler_output=sampler_output,
model_output=model_output_data,
share_inputs=self.share_inputs,
block_size=self.cache_config.block_size,
speculative_decoding=self.speculative_decoding,
skip_save_output=True,
async_output_queue=self.async_output_queue,
think_end_id=self.model_config.think_end_id,
line_break_id=self.model_config.line_break_id,
)
if self.speculative_decoding:
if self.speculative_method == "mtp":
self.proposer.run(
full_hidden_states=model_output,
step_use_cudagraph=self.forward_meta.step_use_cudagraph,
is_dummy_run=True,
)
else:
self.proposer.run(share_inputs=self.share_inputs)
return sampler_output
def _dummy_run(
self,
num_tokens: int,
batch_size: int,
expected_decode_len: int = 1,
in_capturing: bool = False,
capture_prefill: bool = False,
accept_all_drafts: bool = False,
reject_all_drafts: bool = False,
) -> paddle.Tensor:
"""
Use dummy inputs to run before formal execution.
Args:
num_tokens:
expected_decode_len: Expected number of tokens generated
in_capturing: Is cuda graph in capturing state
capture_prefill: Capture pure prefill for cuda graph
accept_all_drafts: Target model will accept all draft tokens
reject_all_drafts: Target model will reject all draft tokens
"""
input_length_list, max_dec_len_list, block_num = self.get_input_length_list(
num_tokens=num_tokens,
batch_size=batch_size,
expected_decode_len=expected_decode_len,
capture_prefill=capture_prefill,
)
self._dummy_prefill_inputs(
input_length_list=input_length_list,
max_dec_len_list=max_dec_len_list,
block_num=block_num,
)
if self.speculative_method in ["mtp"]:
self.proposer.dummy_prefill_inputs(
num_tokens=num_tokens,
batch_size=batch_size,
expected_decode_len=expected_decode_len,
)
while True:
# 1. Initialize forward meta and attention meta data
self._prepare_inputs(is_dummy_or_profile_run=True)
# 2. Padding inputs for cuda graph
self.forward_meta.step_use_cudagraph = in_capturing and self.forward_meta.step_use_cudagraph
self.padding_cudagraph_inputs()
# 3. Run model
if self.enable_mm:
model_output = self.model(
self.forward_meta.ids_remove_padding,
self.share_inputs["image_features"],
self.forward_meta,
)
else:
model_output = self.model(
self.forward_meta.ids_remove_padding,
self.forward_meta,
)
if self.use_cudagraph:
model_output = model_output[: self.real_token_num]
if self.is_pooling_model:
self._dummy_pooler_run(model_output, model_output)
break
else:
hidden_states = rebuild_padding(
model_output,
self.share_inputs["cu_seqlens_q"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["seq_lens_encoder"],
(
self.share_inputs["output_padding_offset"] if self.speculative_decoding else None
), # speculative decoding requires
self.model_config.max_model_len,
)
self._dummy_sampler_run(hidden_states, model_output, accept_all_drafts, reject_all_drafts)
# 7. Updata 'infer_seed' and step_cuda()
self.share_inputs["infer_seed"].add_(self.infer_seed_increment)
self.share_inputs["infer_seed"][:] %= self.MAX_INFER_SEED
step_cuda(
self.share_inputs,
self.cache_config.block_size,
self.cache_config.enc_dec_block_num,
self.speculative_config,
self.cache_config.enable_prefix_caching,
)
if int((self.share_inputs["seq_lens_this_time"] > 0).sum()) == 0:
break
if self.fd_config.routing_replay_config.enable_routing_replay:
self.routing_replay_manager.clear_routing_table()
def _update_chunked_prefill(self, tasks):
"""
Update chunked prefill related parameters
"""
if not self.cache_config.enable_chunked_prefill:
return
if tasks is not None:
for task in tasks:
if task.get("prefill_chunk_info", None) is None:
continue
if task.chunk_idx > len(task.prefill_chunk_info):
continue
self.restore_chunked_prefill_request[task.request_id] = task
for id, task in list(self.restore_chunked_prefill_request.items()):
idx = task.idx
logger.debug(f"{task.request_id} chunked prefill {task.chunk_idx}/{len(task.prefill_chunk_info)}")
if not self.enable_mm:
start_idx = sum(task.prefill_chunk_info[: task.chunk_idx])
if task.chunk_idx == len(task.prefill_chunk_info):
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = 1
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = 0
self.share_inputs["step_idx"][idx : idx + 1] = 1
if self.enable_mm:
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = task.start_idx
else:
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
del self.restore_chunked_prefill_request[task.request_id]
else:
token_chunk_size = task.prefill_chunk_info[task.chunk_idx]
if self.enable_mm:
inputs = self._preprocess_mm_task(task.prefill_chunk_info[task.chunk_idx])
if inputs.get("images") is not None:
self.share_inputs["image_features"] = self.extract_vision_features(inputs)
else:
# Compatible with the situation that lacks images and videos
self.share_inputs["image_features"] = None
token_chunk_size = inputs["input_ids"].shape[1]
self.share_inputs["input_ids"][idx : idx + 1, :token_chunk_size] = inputs["input_ids"]
self.share_inputs["prompt_ids"][
idx : idx + 1,
self.share_inputs["prompt_lens"][idx : idx + 1] : self.share_inputs["prompt_lens"][
idx : idx + 1
]
+ token_chunk_size,
] = inputs["input_ids"]
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = task.start_idx
task.start_idx += token_chunk_size
else:
self.share_inputs["input_ids"][idx, :token_chunk_size] = np.array(
task.prompt_token_ids[start_idx : start_idx + token_chunk_size]
)
self.share_inputs["seq_lens_decoder"][idx : idx + 1] = start_idx + task.get("seq_lens_decoder", 0)
self.share_inputs["seq_lens_this_time"][idx : idx + 1] = token_chunk_size
self.share_inputs["seq_lens_encoder"][idx : idx + 1] = token_chunk_size
self.share_inputs["prompt_lens"][idx : idx + 1] += token_chunk_size
self.share_inputs["step_idx"][idx : idx + 1] = 0
if self.speculative_decoding and self.proposer.is_chunk_prefill_enabled():
self.proposer.update_task_chunk_prefill(task)
task.chunk_idx += 1
@sot_warmup_guard(True)
def capture_model(self) -> None:
"""
Trigger CUDA Graph capture for all shapes in cuda graph capture list
"""
if not self.use_cudagraph:
logger.info("Skipping CUDA graph capture. Please check GraphOptimizationConfig")
return
time_before_capture = time.perf_counter()
expected_decode_len = 1
capture_sizes = self.cudagraph_capture_sizes.copy()
try:
if self.fd_config.graph_opt_config.cudagraph_only_prefill:
for num_tokens in sorted(capture_sizes, reverse=True):
self._dummy_run(
num_tokens=num_tokens,
batch_size=self.scheduler_config.max_num_seqs,
in_capturing=True,
expected_decode_len=expected_decode_len,
capture_prefill=True,
)
logger.info(
f"Warm up the model with the num_tokens:{num_tokens}, expected_decode_len:{expected_decode_len}"
)
elif self.speculative_decoding and self.speculative_method == "mtp":
# Capture Target Model without bsz 1
for batch_size in sorted(capture_sizes, reverse=True):
if batch_size == 1:
logger.info("Skip token_num = 1, when capture target model for mtp")
else:
assert batch_size % 2 == 0
self._dummy_run(
num_tokens=(
self.scheduler_config.max_num_seqs
* (self.speculative_config.num_speculative_tokens + 1)
if self.scheduler_config.splitwise_role == "decode"
else self.scheduler_config.max_num_batched_tokens
),
batch_size=int(batch_size / 2),
in_capturing=True,
expected_decode_len=1,
)
logger.info(
f"Warm up the Target model with the num_tokens:{batch_size}, expected_decode_len:{1}"
)
if self.graph_opt_config.draft_model_use_cudagraph:
# Capture Draft Model without bsz 1
# NOTE(liujundong): expected_decode_len = 1, will affect mtp capture in cudagraph
for batch_size in sorted(capture_sizes, reverse=True):
if batch_size == 1:
logger.info("Skip token_num = 1, when capture Draft model for mtp")
else:
assert batch_size % 2 == 0
self._dummy_run(
num_tokens=(
self.scheduler_config.max_num_seqs
if self.scheduler_config.splitwise_role == "decode"
else self.scheduler_config.max_num_batched_tokens
),
batch_size=int(batch_size / 2),
in_capturing=True,
expected_decode_len=3,
accept_all_drafts=True,
)
logger.info(
f"Warm up the Draft model with the num_tokens:{batch_size}, expected_decode_len:{3}"
)
# Capture Draft Model with bsz 1
if 1 in capture_sizes:
self._dummy_run(
num_tokens=(
self.scheduler_config.max_num_seqs
if self.scheduler_config.splitwise_role == "decode"
else self.scheduler_config.max_num_batched_tokens
),
batch_size=int(1),
in_capturing=True,
expected_decode_len=3,
accept_all_drafts=False,
reject_all_drafts=True,
)
logger.info(
f"Warm up the Draft model with the num_tokens:{batch_size}, expected_decode_len:{3}"
)
else:
for batch_size in sorted(capture_sizes, reverse=True):
self._dummy_run(
num_tokens=(
self.scheduler_config.max_num_seqs
if self.scheduler_config.splitwise_role == "decode"
else self.scheduler_config.max_num_batched_tokens
),
batch_size=batch_size,
in_capturing=True,
expected_decode_len=expected_decode_len,
)
logger.info(
f"Warm up the model with the batch size:{batch_size}, num tokens:{expected_decode_len}"
)
except RuntimeError as e:
if "out of memory" in str(e):
raise RuntimeError(
"CUDA out of memory occurred when warming up CUDAGraph "
f"with the capture sizes {capture_sizes}. Please try "
"lowering `max_num_seqs` or `gpu_memory_utilization` when "
"initializing the engine."
) from e
if "CUDA error(700)" in str(e):
raise RuntimeError(
"CUDA error(700), an illegal memory access was encountered, "
"when warming up CUDAGraph. Please try to set the startup parameter: "
"--graph-optimization-config '{\"use_cudagraph\": false}' to close CUDAGraph"
) from e
else:
raise e
time_after_capture = time.perf_counter()
logger.info(f"Cuda Graph capturing took {time_after_capture - time_before_capture} seconds")
def vision_encoder_compile(self):
if self.graph_opt_config.graph_opt_level == 0:
return
# Currently only PaddleOCR-VL model is supported for vision encoder layer
if self.model_config.model_type != "paddleocr_vl":
return
# Compile for paddleocr_vl vision encoder layer
def apply_compile(fn):
backend = "CINN" if self.graph_opt_config.graph_opt_level >= 2 else None
return paddle.jit.to_static(
fn,
full_graph=False,
backend=backend,
)
from fastdeploy.model_executor.models.paddleocr_vl.siglip import SiglipEncoder
SiglipEncoder._run_encoder_layer = apply_compile(SiglipEncoder._run_encoder_layer)
# Warmup for paddleocr_vl vision encoder layer
logger.info(f"Warmup for {self.model_config.model_type} compile...")
self._dummy_run_extract_vision_features()
@sot_warmup_guard(True)
def sot_warmup(self) -> None:
start_time = time.perf_counter()
for batch_size in self.sot_warmup_sizes:
self._dummy_run(
num_tokens=(
self.scheduler_config.max_num_seqs
if self.scheduler_config.splitwise_role == "decode"
else self.scheduler_config.max_num_batched_tokens
),
batch_size=batch_size,
)
logger.info(f"SOT warmup the model with the batch size:{batch_size}")
logger.info(f"SOT warmup took {time.perf_counter() - start_time} seconds")
def _get_p_done_idxs_gd(self, model_forward_batch: Optional[List[Request]], num_running_requests: int):
"""
Get indices for guided decoding.
When Prefill is done, async compiled logits_processor must be joined.
"""
if self.guided_backend is None:
return []
prefill_done_idxs = []
for idx in range(0, num_running_requests):
if self.share_inputs["step_idx"][idx] == 0:
prefill_done_idxs.append(idx)
if envs.ENABLE_V1_KVCACHE_SCHEDULER:
if model_forward_batch is None:
return prefill_done_idxs
for task in model_forward_batch:
if task.task_type.value != RequestType.PREFILL.value:
continue
# in chunk prefill
if self.cache_config.enable_chunked_prefill:
if hasattr(task, "prefill_end_index") and hasattr(task, "prompt_token_ids"):
if len(task.prompt_token_ids) > task.prefill_end_index and task.idx in prefill_done_idxs:
prefill_done_idxs.remove(task.idx)
return prefill_done_idxs
if self.cache_config.enable_chunked_prefill:
if model_forward_batch is not None:
for task in model_forward_batch:
# new Request with ChunkPrefill, unfinished, store
if task.chunk_idx < len(task.prefill_chunk_info):
if task.request_id not in self.restore_chunked_prefill_request:
self.restore_chunked_prefill_request[task.request_id] = task
for id, task in list(self.restore_chunked_prefill_request.items()):
# unfinished, remove
if task.chunk_idx < len(task.prefill_chunk_info) and task.idx in prefill_done_idxs:
prefill_done_idxs.remove(task.idx)
# finished, add
if task.chunk_idx == len(task.prefill_chunk_info) and task.idx not in prefill_done_idxs:
prefill_done_idxs.append(task.idx)
return prefill_done_idxs
def execute_model(
self,
model_forward_batch: Optional[List[Request]] = None,
num_running_requests: int = None,
) -> None:
"""
The Entrance of model execute.
Args:
model_forward_batch: 'Request' contains information related to prompt and is an abstract
class at the server level, which is too granular for ModelRunner.
We plan to replace it with 'ModelForwardBatch'.
intermediate_tensors:
num_running_requests: batch_size
"""
# 1. Prepare inputs of model and sampler.
p_done_idxs = self._get_p_done_idxs_gd(model_forward_batch, num_running_requests)
self._prepare_inputs()
self.sampler.pre_process(p_done_idxs)
# 1.1 Update state of logits processor
for proc in self.sampling_metadata.logits_processors:
proc.update_state(self.share_inputs)
# 2. Padding inputs for cuda graph
self.padding_cudagraph_inputs()
# 3. Execute model
if self.enable_mm:
model_output = self.model(
self.forward_meta.ids_remove_padding,
self.share_inputs["image_features"],
self.forward_meta,
)
else:
model_output = self.model(
self.forward_meta.ids_remove_padding,
self.forward_meta,
)
# NOTE(wufeisheng): If `not_need_stop`` is False, it means the current worker is in an idle state.
# This logic is not used in TP (Tensor Parallelism) mode. However, in EP (Expert Parallelism) mode,
# Then there is data on other runner, the current runner is required to execute part of the model.
# But not need to run the below code.
if not self.not_need_stop():
return None
if self.use_cudagraph:
model_output = model_output[: self.real_token_num]
prompt_logprobs_list = self._get_prompt_logprobs_list(model_output)
if self.is_pooling_model:
pooler_output = self._pool(model_output, num_running_requests)
model_output_data = ModelOutputData(
next_tokens=self.share_inputs["next_tokens"],
stop_flags=self.share_inputs["stop_flags"],
step_idx=self.share_inputs["step_idx"],
max_dec_len=self.share_inputs["max_dec_len"],
pre_ids=self.share_inputs["pre_ids"],
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
eos_token_id=self.share_inputs["eos_token_id"],
not_need_stop=self.share_inputs["not_need_stop"],
input_ids=self.share_inputs["input_ids"],
stop_nums=self.share_inputs["stop_nums"],
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
is_block_step=self.share_inputs["is_block_step"],
full_hidden_states=model_output,
msg_queue_id=self.parallel_config.msg_queue_id,
mp_rank=self.parallel_config.tensor_parallel_rank,
use_ep=self.parallel_config.use_ep,
draft_tokens=(self.share_inputs["draft_tokens"] if self.speculative_decoding else None),
actual_draft_token_num=(
self.share_inputs["actual_draft_token_num"] if self.speculative_decoding else None
),
accept_tokens=(self.share_inputs["accept_tokens"] if self.speculative_decoding else None),
accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None),
stop_token_ids=self.share_inputs["stop_seqs"],
stop_seqs_len=self.share_inputs["stop_seqs_len"],
min_tokens=self.share_inputs["min_dec_len"],
prompt_lens=self.share_inputs["prompt_lens"],
)
post_process(
sampler_or_pooler_output=pooler_output,
model_output=model_output_data,
share_inputs=self.share_inputs,
block_size=self.cache_config.block_size,
save_each_rank=self.parallel_config.use_ep,
speculative_decoding=self.speculative_decoding,
skip_save_output=False,
async_output_queue=self.async_output_queue,
)
return None
else:
hidden_states = rebuild_padding(
model_output,
self.share_inputs["cu_seqlens_q"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["seq_lens_encoder"],
(self.share_inputs["output_padding_offset"] if self.speculative_decoding else None),
self.model_config.max_model_len,
)
# 4. Compute logits, Sample
logits = self.model.compute_logits(hidden_states)
if not self.speculative_decoding:
set_value_by_flags_and_idx(
self.share_inputs["pre_ids"],
self.share_inputs["input_ids"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["step_idx"],
self.share_inputs["stop_flags"],
)
sampler_output = self.sampler(
logits,
self.sampling_metadata,
p_done_idxs,
)
if (
self.enable_logprob
and not envs.FD_USE_GET_SAVE_OUTPUT_V1
and sampler_output.logprobs_tensors is None
):
sampler_output.logprobs_tensors = LogprobsTensors(
logprob_token_ids=sampler_output.sampled_token_ids,
logprobs=paddle.empty_like(sampler_output.sampled_token_ids, device="cpu", dtype="float32"),
selected_token_ranks=paddle.empty(
[sampler_output.sampled_token_ids.shape[0]], device="cpu", dtype="int64"
),
)
if self.parallel_config.tensor_parallel_size > 1:
paddle.distributed.broadcast(
sampler_output.sampled_token_ids,
self.parallel_config.data_parallel_rank * self.parallel_config.tensor_parallel_size,
group=self.parallel_config.tp_group,
)
else:
sampler_output = self.sampler(
logits,
self.sampling_metadata,
self.model_config.max_model_len,
self.share_inputs,
)
if self.parallel_config.tensor_parallel_size > 1:
paddle.distributed.broadcast(
self.share_inputs["accept_tokens"],
self.parallel_config.data_parallel_rank * self.parallel_config.tensor_parallel_size,
group=self.parallel_config.tp_group,
)
paddle.distributed.broadcast(
self.share_inputs["accept_num"],
self.parallel_config.data_parallel_rank * self.parallel_config.tensor_parallel_size,
group=self.parallel_config.tp_group,
)
paddle.distributed.broadcast(
self.share_inputs["step_idx"],
self.parallel_config.data_parallel_rank * self.parallel_config.tensor_parallel_size,
group=self.parallel_config.tp_group,
)
paddle.distributed.broadcast(
self.share_inputs["stop_flags"],
self.parallel_config.data_parallel_rank * self.parallel_config.tensor_parallel_size,
group=self.parallel_config.tp_group,
)
# 5. Post Process
model_output_data = ModelOutputData(
next_tokens=self.share_inputs["next_tokens"],
stop_flags=self.share_inputs["stop_flags"],
step_idx=self.share_inputs["step_idx"],
max_dec_len=self.share_inputs["max_dec_len"],
pre_ids=self.share_inputs["pre_ids"],
seq_lens_this_time=self.share_inputs["seq_lens_this_time"],
eos_token_id=self.share_inputs["eos_token_id"],
not_need_stop=self.share_inputs["not_need_stop"],
input_ids=self.share_inputs["input_ids"],
stop_nums=self.share_inputs["stop_nums"],
seq_lens_encoder=self.share_inputs["seq_lens_encoder"],
seq_lens_decoder=self.share_inputs["seq_lens_decoder"],
is_block_step=self.share_inputs["is_block_step"],
full_hidden_states=model_output,
msg_queue_id=self.parallel_config.msg_queue_id,
mp_rank=self.parallel_config.tensor_parallel_rank,
use_ep=self.parallel_config.use_ep,
draft_tokens=(self.share_inputs["draft_tokens"] if self.speculative_decoding else None),
actual_draft_token_num=(
self.share_inputs["actual_draft_token_num"] if self.speculative_decoding else None
),
accept_tokens=(self.share_inputs["accept_tokens"] if self.speculative_decoding else None),
accept_num=(self.share_inputs["accept_num"] if self.speculative_decoding else None),
stop_token_ids=self.share_inputs["stop_seqs"],
stop_seqs_len=self.share_inputs["stop_seqs_len"],
min_tokens=self.share_inputs["min_dec_len"],
prompt_lens=self.share_inputs["prompt_lens"],
mask_rollback=self.share_inputs["mask_rollback"],
prompt_logprobs_list=prompt_logprobs_list,
)
if self.speculative_config.method in ["mtp"] and self.scheduler_config.splitwise_role == "prefill":
skip_save_output = True
else:
skip_save_output = False
post_process(
sampler_or_pooler_output=sampler_output,
model_output=model_output_data,
share_inputs=self.share_inputs,
block_size=self.cache_config.block_size,
save_each_rank=self.parallel_config.use_ep,
speculative_decoding=self.speculative_decoding,
skip_save_output=skip_save_output,
async_output_queue=self.async_output_queue,
think_end_id=self.model_config.think_end_id,
line_break_id=self.model_config.line_break_id,
)
if self.guided_backend is not None and sampler_output is not None:
self.sampler.post_process(sampler_output.sampled_token_ids)
# 6. Speculative decode
if self.speculative_decoding:
if self.speculative_method == "mtp":
self.proposer.run(
full_hidden_states=model_output, step_use_cudagraph=self.forward_meta.step_use_cudagraph
)
else:
self.proposer.run(share_inputs=self.share_inputs)
# 7. Update 'infer_seed' and step_cuda()
self.share_inputs["infer_seed"].add_(self.infer_seed_increment)
self.share_inputs["infer_seed"][:] %= self.MAX_INFER_SEED
if not envs.ENABLE_V1_KVCACHE_SCHEDULER:
step_cuda(
self.share_inputs,
self.cache_config.block_size,
self.cache_config.enc_dec_block_num,
self.speculative_config,
self.cache_config.enable_prefix_caching,
)
self._update_chunked_prefill(model_forward_batch)
elif self.speculative_decoding:
speculate_schedule_cache(
self.share_inputs["draft_tokens"],
self.share_inputs["block_tables"],
self.share_inputs["stop_flags"],
self.share_inputs["prompt_lens"],
self.share_inputs["seq_lens_this_time"],
self.share_inputs["seq_lens_encoder"],
self.share_inputs["seq_lens_decoder"],
self.share_inputs["step_seq_lens_decoder"],
self.share_inputs["step_draft_tokens"],
self.share_inputs["step_seq_lens_this_time"],
self.share_inputs["accept_num"],
self.share_inputs["accept_tokens"],
self.share_inputs["is_block_step"],
self.share_inputs["not_need_stop"],
self.share_inputs["stop_nums"],
self.cache_config.block_size,
self.speculative_config.num_speculative_tokens,
)
# Routing replay
if self.fd_config.routing_replay_config.enable_routing_replay:
if (
not self.exist_prefill()
and not self.exist_decode()
and self.share_inputs["is_block_step"].sum() == 0
and self.share_inputs["is_chunk_step"].sum() == 0
):
self.routing_replay_manager.put_table_to_store()
return None
def _pool(self, hidden_states: paddle.Tensor, num_running_requests: int) -> Optional[ModelRunnerOutput]:
num_scheduled_tokens = int(self.share_inputs["seq_lens_this_time"][:num_running_requests].sum())
hidden_states = hidden_states[:num_scheduled_tokens]
prompt_lens = self.share_inputs["prompt_lens"][:num_running_requests]
prompt_token_ids = self.share_inputs["prompt_ids"]
pooling_metadata = PoolingMetadata(
prompt_lens=prompt_lens,
prompt_token_ids=prompt_token_ids,
pooling_params=self.pooling_params,
)
num_scheduled_tokens_list = [
int(self.share_inputs["seq_lens_this_time"][i]) for i in range(num_running_requests)
]
device_str = "gpu" if hidden_states.place.is_gpu_place() else "cpu"
pooling_metadata.build_pooling_cursor(num_scheduled_tokens_list, device=device_str)
raw_pooler_output = self.model.pooler(hidden_states=hidden_states, pooling_metadata=pooling_metadata)
seq_lens_decoder = self.share_inputs["seq_lens_decoder"][:num_running_requests]
seq_lens_encoder = self.share_inputs["seq_lens_encoder"][:num_running_requests]
pooler_output: list[Optional[paddle.Tensor]] = []
pooler_output_idx = 0
for i, prompt_len in enumerate(pooling_metadata.prompt_lens):
current_seq_len = num_scheduled_tokens_list[i]
if current_seq_len == 0:
pooler_output.append(None)
continue
total_processed = int(seq_lens_decoder[i]) + int(seq_lens_encoder[i])
if total_processed == int(prompt_len):
output = raw_pooler_output[pooler_output_idx]
else:
output = None
pooler_output.append(output)
pooler_output_idx += 1
return PoolerOutput(outputs=pooler_output)
def _execute_empty_input(self, forward_meta) -> None:
"""
In certain scenarios, such as during EP,
the runner needs to execute partial modules of the model without input data.
This requires the model to implement the `empty_input_forward` method.
"""
if hasattr(self.model, "empty_input_forward"):
self.model.empty_input_forward(forward_meta)
else:
raise ValueError(f"{type(self.model)} has no attribute 'empty_input_forward")
@profile_run_guard(True)
def profile_run(self) -> None:
"""Execute a forward pass with dummy inputs to profile the memory usage of the model"""
# Initialize kv cache for profile run. After profile run kv cache will be reset.
# TODO(gongshaotian): Optimize the management logic of kvcache
self.num_gpu_blocks = self.cache_config.total_block_num
self.initialize_kv_cache(profile=True)
if self.speculative_method in ["mtp"]:
self.proposer.initialize_kv_cache(main_model_num_blocks=self.num_gpu_blocks, profile=True)
# 1. Profile with multimodal encoder & encoder cache
# 2. Dummy run
self._dummy_run(
num_tokens=(
self.scheduler_config.max_num_seqs
if self.scheduler_config.splitwise_role == "decode"
else self.scheduler_config.max_num_batched_tokens
),
batch_size=self.scheduler_config.max_num_seqs,
)
# 3. gc
self.clear_cache()
if self.speculative_method in ["mtp"]:
self.proposer.clear_mtp_cache()
def update_share_input_block_num(self, num_gpu_blocks: int) -> None:
"""
Set a globally unified block number and update the model's shared input.
Args:
num_gpu_blocks:
"""
self.num_gpu_blocks = num_gpu_blocks
# Reset block table and kv cache with global block num
self.initialize_kv_cache()
# Reset free list
free_list = list(
range(
self.num_gpu_blocks - 1,
int(self.num_gpu_blocks * self.cache_config.kv_cache_ratio) - 1,
-1,
)
)
self.free_list_len = len(free_list)
self.share_inputs.update(
{
"free_list": paddle.to_tensor(free_list, dtype="int32"),
"free_list_len": paddle.full([1], self.free_list_len, dtype="int32"),
}
)
if self.speculative_method in ["mtp"]:
self.proposer.update_mtp_block_num(num_gpu_blocks)
def cal_theortical_kvcache(self):
"""
Calculate the total block memory required at the model level
TODO(gongshaotian): Move to Attention Backend
"""
"""
Byte of dtype:
- default(bf16): 2
- cache_int8: 1
- cache_int4:
"""
cache_quant_dtype = None
if (
self.quant_config
and hasattr(self.quant_config, "kv_cache_quant_type")
and self.quant_config.kv_cache_quant_type is not None
):
cache_quant_dtype = self.quant_config.kv_cache_quant_type
if cache_quant_dtype is not None: # int8, int8_zp, fp8, fp8_zp
byte_of_dtype = 1
else: # default
byte_of_dtype = 2
hidden_dim = self.model_config.head_dim * self.model_config.kv_num_heads
# NOTE(liuzichang): Implement multi-layer MTP architecture in the future
num_layers = (
self.model_config.num_hidden_layers + self.speculative_config.num_gpu_block_expand_ratio
if self.speculative_method in ["mtp"]
else self.model_config.num_hidden_layers
)
# NOTE:(changwenbin) Determie whether it is Multi-Head Latent Attention,
# To rationalize the allocation of kvcache.
if self.mla_cache:
required_memory = (
byte_of_dtype
* (self.fd_config.model_config.kv_lora_rank + self.fd_config.model_config.qk_rope_head_dim)
* (self.cache_config.block_size)
* num_layers
) # compress_kv + k_pe
else:
required_memory = byte_of_dtype * 2 * (self.cache_config.block_size * hidden_dim) * num_layers # k + v
return required_memory
def not_need_stop(self) -> bool:
"""Stop decoding if the tensor meets the termination condition"""
return self.share_inputs["not_need_stop"][0]
def clear_cache(self):
"""Clear cached data from shared inputs and forward metadata"""
self.share_inputs.pop("caches", None)
if self.forward_meta is not None:
self.forward_meta.clear_caches()
paddle.device.cuda.empty_cache()
def clear_parameters(self, pid):
"""Dynamic model loader use to clear parameters use for RL"""
# Clear CUDAGraph
if self.use_cudagraph:
self.model.clear_grpah_opt_backend()
# Clear parameters and Send single
self.dynamic_weight_manager.clear_parameters(pid)
self.clear_cache()
paddle.device.cuda.empty_cache()
self.dynamic_weight_manager._log_memory("dynamic weight manager clear all memory")
def clear_requests(self):
"""Dynamic model loader use to clear requests use for RL"""
self.share_inputs["stop_flags"][:] = True
# prompt_logprobs
self.prompt_logprobs_reqs.clear()
self.in_progress_prompt_logprobs.clear()
self.forward_batch_reqs_list = [None for _ in range(self.scheduler_config.max_num_seqs)]
def update_parameters(self, pid):
"""Dynamic model loader use to update parameters use for RL"""
# Update parameters
self.dynamic_weight_manager.update_parameters(pid)
self.initialize_kv_cache()
# Recapture CUDAGraph
if self.use_cudagraph:
self.capture_model()
# Send single
self.dynamic_weight_manager.finalize_update(pid)
self.dynamic_weight_manager._log_memory("dynamic weight manager update all memory")
def padding_cudagraph_inputs(self) -> None:
"""
Clean buffers used for the CUDA graph when replaying the CUDA graph with the padded batch.
In FastDeploy, almost all input tensors have a buffer. So, just keep the buffer clean when replaying the CUDA graph with the padded batch.
"""
# In init_attention_metadata, the decode buffer has already been cleared
# To adapt to CUDA Graph, keep the forward pass at the maximum batch size.
if self.use_cudagraph:
self.forward_meta.seq_lens_this_time = self.seq_lens_this_time_buffer
self.real_token_num = self.forward_meta.ids_remove_padding.shape[0]
return
def _init_image_preprocess(self) -> None:
processor = DataProcessor(
tokenizer_name=self.model_config.model,
image_preprocessor_name=str(self.model_config.model),
)
processor.eval()
image_preprocess = processor.image_preprocessor
image_preprocess.image_mean_tensor = paddle.to_tensor(image_preprocess.image_mean, dtype="float32").reshape(
[1, 3, 1, 1]
)
image_preprocess.image_std_tensor = paddle.to_tensor(image_preprocess.image_std, dtype="float32").reshape(
[1, 3, 1, 1]
)
image_preprocess.rescale_factor = paddle.to_tensor(image_preprocess.rescale_factor, dtype="float32")
image_preprocess.image_mean_tensor = image_preprocess.image_mean_tensor.squeeze([-2, -1]).repeat_interleave(
self.model_config.vision_config.patch_size**2 * 1, -1
)
image_preprocess.image_std_tensor = image_preprocess.image_std_tensor.squeeze([-2, -1]).repeat_interleave(
self.model_config.vision_config.patch_size**2 * 1, -1
)
self.image_preprocess = image_preprocess
def _preprocess_mm_task(self, one: dict) -> None:
"""process batch"""
input_ids = one["input_ids"][np.newaxis, :]
input_ids = paddle.to_tensor(input_ids, dtype=paddle.int64)
token_type_ids = one["token_type_ids"][np.newaxis, :]
token_type_ids = paddle.to_tensor(token_type_ids, dtype=paddle.int64)
if "images" in one and one["images"] is not None:
image_type_ids = one["image_type_ids"][np.newaxis, :]
images = one["images"]
image_type_ids = paddle.to_tensor(image_type_ids, dtype=paddle.int64)
images = paddle.to_tensor(images, dtype="uint8" if "ernie" in self.model_config.model_type else "bfloat16")
grid_thw = paddle.to_tensor(one["grid_thw"], dtype="int64")
else:
image_type_ids = None
images = None
grid_thw = None
if one["position_ids"] is not None:
position_ids = paddle.to_tensor(one["position_ids"], dtype="int64")
else:
position_ids = None
result = dict(
input_ids=input_ids,
image_type_ids=image_type_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
grid_thw=grid_thw,
images=images,
)
return result
def extract_vision_features_ernie(self, vision_inputs: dict[str, list[paddle.Tensor]]) -> paddle.Tensor:
"""
vision feature extactor for ernie-vl
"""
assert len(vision_inputs["images_lst"]) > 0, "at least one image needed"
grid_thw = paddle.to_tensor(vision_inputs["grid_thw_lst"], dtype=paddle.int64)
# ernie-vl has images norm
images = paddle.concat(vision_inputs["images_lst"]).cast("float32")
images = self.image_preprocess.rescale_factor * images - self.image_preprocess.image_mean_tensor
images = images / self.image_preprocess.image_std_tensor
images = images.cast("bfloat16")
with paddle.amp.auto_cast(
True,
custom_black_list=self.amp_black,
custom_white_list=self.amp_white,
level="O2",
dtype=self.model_config.dtype,
):
image_features = self.model.vision_model.extract_feature(images, grid_thw)
if self.parallel_config.tensor_parallel_size > 1:
S, C = image_features.shape
image_features = image_features.reshape([-1, C * self.model_config.spatial_conv_size**2])
image_features = ScatterOp.apply(image_features, axis=-1) # mp 切 Fea
image_features = image_features.reshape([S, -1])
# ernie-vl has resampler_model
image_features = self.model.resampler_model(
image_features,
grid_thw,
)
return image_features
def extract_vision_features_qwen(self, vision_inputs: dict[str, list[paddle.Tensor]]) -> paddle.Tensor:
assert len(vision_inputs["images_lst"]) > 0, "at least one image needed"
grid_thw = paddle.to_tensor(vision_inputs["grid_thw_lst"], dtype=paddle.int64)
images = paddle.concat(vision_inputs["images_lst"]).cast("bfloat16")
with paddle.amp.auto_cast(
True,
custom_black_list=self.amp_black,
custom_white_list=self.amp_white,
level="O2",
dtype=self.model_config.dtype,
):
image_features = self.model.visual.extract_feature(images, grid_thw)
return image_features
def extract_vision_features_paddleocr(self, inputs: dict[str, list[paddle.Tensor]]) -> paddle.Tensor:
if envs.FD_ENABLE_MAX_PREFILL:
inputs["vit_position_ids_lst"] = np.concatenate(inputs["vit_position_ids_lst"])
images = paddle.concat(inputs["images_lst"]).cast("bfloat16")
grid_thw = paddle.to_tensor(inputs["grid_thw_lst"], dtype="int64")
position_ids = paddle.to_tensor(inputs["vit_position_ids_lst"], dtype="int64")
cu_seqlens = paddle.cumsum(paddle.to_tensor(inputs["cu_seqlens"])).cast("int32")
else:
assert inputs["images"] is not None
grid_thw = inputs["grid_thw"]
images = inputs["images"]
position_ids = []
cu_seqlens = [0]
for idx, thw in enumerate(grid_thw):
numel = np.prod(np.array(thw))
position_ids.append(paddle.arange(numel) % np.prod(thw[1:]))
cu_seqlens.append(cu_seqlens[-1] + numel)
position_ids = paddle.concat(position_ids, axis=0).to(images.place)
cu_seqlens = paddle.to_tensor(cu_seqlens, dtype=paddle.int32).to(images.place)
with paddle.amp.auto_cast(
True,
custom_black_list=self.amp_black,
custom_white_list=self.amp_white,
level="O2",
dtype=self.model_config.dtype,
):
image_features = self.model.visual(
pixel_values=images,
image_grid_thw=grid_thw,
position_ids=position_ids,
interpolate_pos_encoding=True,
cu_seqlens=cu_seqlens,
use_rope=True,
window_size=-1,
)
image_features = self.model.projector(image_features, grid_thw)
image_features = paddle.concat(image_features, axis=0)
return image_features
@paddle.no_grad()
def extract_vision_features(self, multi_vision_inputs: dict[str, list[paddle.Tensor]]) -> paddle.Tensor:
"""extract_vision_features"""
if "ernie" in self.model_config.model_type:
return self.extract_vision_features_ernie(multi_vision_inputs)
elif "qwen" in self.model_config.model_type:
return self.extract_vision_features_qwen(multi_vision_inputs)
elif "paddleocr" in self.model_config.model_type:
return self.extract_vision_features_paddleocr(multi_vision_inputs)
else:
raise ValueError(f"multiple modalities model {self.model_config.model_type} is not supported")
@paddle.no_grad()
def _dummy_run_extract_vision_features(self):
grid_thw_list = ([(1, 10, 88), (1, 10, 80)], [(1, 14, 62), (1, 20, 42), (1, 14, 60)])
for grid_thw in grid_thw_list:
images = []
position_ids = []
cu_seqlens = [0]
for idx, thw in enumerate(grid_thw):
numel = np.prod(np.array(thw))
images.append(paddle.uniform(shape=[numel, 3, 14, 14], dtype="float32", min=0.0, max=1.0))
position_ids.append(paddle.arange(numel) % np.prod(thw[1:]))
cu_seqlens.append(cu_seqlens[-1] + numel)
images = paddle.concat(images, axis=0)
position_ids = paddle.concat(position_ids, axis=0).to(images.place)
cu_seqlens = paddle.to_tensor(cu_seqlens, dtype=paddle.int32).to(images.place)
with paddle.amp.auto_cast(
True,
custom_black_list=self.amp_black,
custom_white_list=self.amp_white,
level="O2",
dtype=self.model_config.dtype,
):
self.model.visual(
pixel_values=images,
image_grid_thw=grid_thw,
position_ids=position_ids,
interpolate_pos_encoding=True,
cu_seqlens=cu_seqlens,
use_rope=True,
window_size=-1,
)
@paddle.no_grad()
def prepare_rope3d(
self, position_ids: paddle.Tensor, max_len_lst: list[int], cumsum_seqlens: list[int]
) -> list[paddle.Tensor]:
"""prepare_rope3d"""
rope_emb_lst = get_rope_3d(
position_ids=position_ids,
rotary_dim=self.model_config.head_dim,
partial_rotary_factor=1.0,
base=self.model_config.rope_theta,
max_position=self.model_config.max_model_len,
freq_allocation=getattr(self.model_config, "freq_allocation", 20),
model_type=self.model_config.model_type,
max_len_lst=max_len_lst,
cumsum_seqlens=cumsum_seqlens,
)
return rope_emb_lst
def _get_prompt_logprobs_list(
self,
hidden_states: paddle.Tensor,
) -> list[Optional[LogprobsTensors]]:
if len(self.prompt_logprobs_reqs) > 0:
assert (
not self.fd_config.cache_config.enable_prefix_caching
), "prompt_logprobs must disable prefix caching, --no-enable-prefix-caching."
logprobs_mode = self.fd_config.model_config.logprobs_mode
prompt_logprobs_list: list[Optional[LogprobsTensors]] = self.scheduler_config.max_num_seqs * [None]
completed_prefill_reqs: list[Request] = []
for req_id, request in self.prompt_logprobs_reqs.items():
num_prompt_logprobs = request.sampling_params.prompt_logprobs
if request.prompt_token_ids is None or num_prompt_logprobs is None:
continue
if num_prompt_logprobs == -1:
num_prompt_logprobs = self.ori_vocab_size
num_tokens = request.prefill_end_index - request.prefill_start_index
num_prompt_tokens = len(request.prompt_token_ids)
logprobs_tensors = self.in_progress_prompt_logprobs.get(req_id)
if not logprobs_tensors:
logprobs_tensors = LogprobsTensors.empty_cpu(num_prompt_tokens - 1, num_prompt_logprobs + 1)
self.in_progress_prompt_logprobs[req_id] = logprobs_tensors
start_idx = request.prefill_start_index
start_tok = start_idx + 1
num_remaining_tokens = num_prompt_tokens - start_tok
if num_tokens <= num_remaining_tokens:
# This is a chunk, more tokens remain.
# In the == case, there are no more prompt logprobs to produce
# but we want to defer returning them to the next step where we
# have new generated tokens to return.
num_logits = num_tokens
else:
# This is the last chunk of prompt tokens to return.
num_logits = num_remaining_tokens
completed_prefill_reqs.append(request)
prompt_logprobs_list[request.idx] = logprobs_tensors
if num_logits <= 0:
# This can happen for the final chunk if we prefilled exactly
# (num_prompt_tokens - 1) tokens for this request in the prior
# step. There are no more prompt logprobs to produce.
continue
offset = self.share_inputs["cu_seqlens_q"][request.idx]
prompt_hidden_states = hidden_states[offset : offset + num_logits]
logits = self.model.compute_logits(prompt_hidden_states)
prompt_token_ids = request.prompt_token_ids[start_tok : start_tok + num_logits]
prompt_token_ids_tensor = paddle.to_tensor(prompt_token_ids, dtype="int64")
if logprobs_mode == "raw_logprobs":
raw_logprobs = self.sampler.compute_logprobs(logits)
elif logprobs_mode == "raw_logits":
raw_logprobs = logits
token_ids, logprobs, ranks = self.sampler.gather_logprobs(
raw_logprobs, num_prompt_logprobs, prompt_token_ids_tensor
)
chunk_slice = slice(start_idx, start_idx + num_logits)
logprobs_tensors.logprob_token_ids[chunk_slice].copy_(token_ids, False)
logprobs_tensors.logprobs[chunk_slice].copy_(logprobs, False)
logprobs_tensors.selected_token_ranks[chunk_slice].copy_(ranks, False)
for req in completed_prefill_reqs:
del self.prompt_logprobs_reqs[req.request_id]
del self.in_progress_prompt_logprobs[req.request_id]
return prompt_logprobs_list