mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Optimize Poros backend * fix error * Add more pybind * fix conflicts * add some deprecate notices * [Other] Deprecate some apis in RuntimeOption (#1240) * Deprecate more options * modify serving * Update option.h * fix tensorrt error * Update option_pybind.cc * Update option_pybind.cc * Fix error in serving * fix word spell error
85 lines
3.3 KiB
C++
Executable File
85 lines
3.3 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/core/fd_type.h"
|
|
#include <iostream>
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace fastdeploy {
|
|
|
|
/*! @brief Option object to configure TensorRT backend
|
|
*/
|
|
struct TrtBackendOption {
|
|
/// `max_batch_size`, it's deprecated in TensorRT 8.x
|
|
size_t max_batch_size = 32;
|
|
|
|
/// `max_workspace_size` for TensorRT
|
|
size_t max_workspace_size = 1 << 30;
|
|
|
|
/*
|
|
* @brief Enable half precison inference, on some device not support half precision, it will fallback to float32 mode
|
|
*/
|
|
bool enable_fp16 = false;
|
|
|
|
/** \brief Set shape range of input tensor for the model that contain dynamic input shape while using TensorRT backend
|
|
*
|
|
* \param[in] tensor_name The name of input for the model which is dynamic shape
|
|
* \param[in] min The minimal shape for the input tensor
|
|
* \param[in] opt The optimized shape for the input tensor, just set the most common shape, if set as default value, it will keep same with min_shape
|
|
* \param[in] max The maximum shape for the input tensor, if set as default value, it will keep same with min_shape
|
|
*/
|
|
void SetShape(const std::string& tensor_name,
|
|
const std::vector<int32_t>& min,
|
|
const std::vector<int32_t>& opt,
|
|
const std::vector<int32_t>& max) {
|
|
min_shape[tensor_name].clear();
|
|
max_shape[tensor_name].clear();
|
|
opt_shape[tensor_name].clear();
|
|
min_shape[tensor_name].assign(min.begin(), min.end());
|
|
if (opt.size() == 0) {
|
|
opt_shape[tensor_name].assign(min.begin(), min.end());
|
|
} else {
|
|
opt_shape[tensor_name].assign(opt.begin(), opt.end());
|
|
}
|
|
if (max.size() == 0) {
|
|
max_shape[tensor_name].assign(min.begin(), min.end());
|
|
} else {
|
|
max_shape[tensor_name].assign(max.begin(), max.end());
|
|
}
|
|
}
|
|
/**
|
|
* @brief Set cache file path while use TensorRT backend. Loadding a Paddle/ONNX model and initialize TensorRT will take a long time, by this interface it will save the tensorrt engine to `cache_file_path`, and load it directly while execute the code again
|
|
*/
|
|
std::string serialize_file = "";
|
|
|
|
// The below parameters may be removed in next version, please do not
|
|
// visit or use them directly
|
|
std::map<std::string, std::vector<int32_t>> max_shape;
|
|
std::map<std::string, std::vector<int32_t>> min_shape;
|
|
std::map<std::string, std::vector<int32_t>> opt_shape;
|
|
bool enable_pinned_memory = false;
|
|
void* external_stream_ = nullptr;
|
|
int gpu_id = 0;
|
|
std::string model_file = ""; // Path of model file
|
|
std::string params_file = ""; // Path of parameters file, can be empty
|
|
// format of input model
|
|
ModelFormat model_format = ModelFormat::AUTOREC;
|
|
};
|
|
|
|
|
|
} // namespace fastdeploy
|