Files
FastDeploy/fastdeploy/runtime/backends/tensorrt/ops/adaptive_pool2d.cc
yeliang2258 829fe0721d [Backend] Add TensorRT FP16 support for AdaptivePool2d (#1116)
* add fp16 cuda kernel

* fix code bug

* update code
2023-01-13 19:44:00 +08:00

210 lines
7.3 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "adaptive_pool2d.h"
namespace fastdeploy {
nvinfer1::PluginFieldCollection AdaptivePool2dPluginCreator::mFC{};
std::vector<nvinfer1::PluginField>
AdaptivePool2dPluginCreator::mPluginAttributes;
pluginStatus_t AdaptivePool2dInference(cudaStream_t stream, int32_t n,
const void* input, void* output);
AdaptivePool2d::AdaptivePool2d(std::vector<int32_t> output_size,
std::string pooling_type) {
output_size_ = output_size;
pooling_type_ = pooling_type;
}
AdaptivePool2d::AdaptivePool2d(const void* buffer, size_t length) {
const char *d = reinterpret_cast<const char*>(buffer), *a = d;
output_size_.resize(4);
for (int64_t i = 0; i < 4; i++) {
output_size_[i] = read<int32_t>(d);
}
if (read<int32_t>(d) == 0) {
pooling_type_ = "avg";
} else {
pooling_type_ = "max";
}
FDASSERT(d == a + length, "deserialize failed.");
}
int AdaptivePool2d::getNbOutputs() const noexcept { return 1; }
nvinfer1::DimsExprs AdaptivePool2d::getOutputDimensions(
int outputIndex, const nvinfer1::DimsExprs* inputs, int nbInputs,
nvinfer1::IExprBuilder& exprBuilder) noexcept {
try {
nvinfer1::DimsExprs output(inputs[0]);
output.d[2] = exprBuilder.constant(static_cast<int32_t>(output_size_[2]));
output.d[3] = exprBuilder.constant(static_cast<int32_t>(output_size_[3]));
return output;
} catch (const std::exception& e) {
FDASSERT(false, "getOutputDimensions failed: %s.", e.what());
}
return nvinfer1::DimsExprs{};
}
int AdaptivePool2d::enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
const nvinfer1::PluginTensorDesc* outputDesc,
const void* const* inputs, void* const* outputs,
void* workspace, cudaStream_t stream) noexcept {
int nums = outputDesc[0].dims.d[0] * outputDesc[0].dims.d[1] *
outputDesc[0].dims.d[2] * outputDesc[0].dims.d[3];
std::vector<int64_t> input_size, output_size;
for (int i = 0; i < 4; i++) {
input_size.push_back(inputDesc[0].dims.d[i]);
output_size.push_back(outputDesc[0].dims.d[i]);
}
if (inputDesc[0].type == nvinfer1::DataType::kHALF) {
if (outputDesc[0].type == nvinfer1::DataType::kHALF) {
CudaAdaptivePool(input_size, output_size, outputs[0], inputs[0], stream,
pooling_type_, "half", "half");
} else if (outputDesc[0].type == nvinfer1::DataType::kFLOAT) {
CudaAdaptivePool(input_size, output_size, outputs[0], inputs[0], stream,
pooling_type_, "half", "float");
}
} else if (inputDesc[0].type == nvinfer1::DataType::kFLOAT) {
CudaAdaptivePool(input_size, output_size, outputs[0], inputs[0], stream,
pooling_type_, "float", "float");
}
return cudaPeekAtLastError();
}
size_t AdaptivePool2d::getSerializationSize() const noexcept {
return 5 * sizeof(int32_t);
}
void AdaptivePool2d::serialize(void* buffer) const noexcept {
char *d = reinterpret_cast<char*>(buffer), *a = d;
for (int64_t i = 0; i < 4; i++) {
write(d, output_size_[i]);
}
int32_t pooling_type_val = 0;
if (pooling_type_ != "avg") {
pooling_type_val = 1;
}
write(d, pooling_type_val);
FDASSERT(d == a + getSerializationSize(), "d == a + getSerializationSize()");
}
nvinfer1::DataType AdaptivePool2d::getOutputDataType(
int index, const nvinfer1::DataType* inputType,
int nbInputs) const noexcept {
return inputType[0];
}
bool AdaptivePool2d::supportsFormatCombination(
int pos, const nvinfer1::PluginTensorDesc* inOut, int nbInputs,
int nbOutputs) noexcept {
if ((inOut[pos].format == nvinfer1::PluginFormat::kLINEAR) &&
(inOut[pos].type == nvinfer1::DataType::kFLOAT ||
inOut[pos].type == nvinfer1::DataType::kHALF)) {
return true;
}
return false;
}
int AdaptivePool2d::initialize() noexcept { return 0; }
void AdaptivePool2d::terminate() noexcept { return; }
size_t AdaptivePool2d::getWorkspaceSize(
const nvinfer1::PluginTensorDesc* inputs, int nbInputs,
const nvinfer1::PluginTensorDesc* outputs, int nbOutputs) const noexcept {
return 0;
}
const char* AdaptivePool2d::getPluginType() const noexcept {
return "AdaptivePool2d";
}
const char* AdaptivePool2d::getPluginVersion() const noexcept { return "1"; }
void AdaptivePool2d::destroy() noexcept { return; }
void AdaptivePool2d::configurePlugin(
const nvinfer1::DynamicPluginTensorDesc* in, int nbInputs,
const nvinfer1::DynamicPluginTensorDesc* out, int nbOutputs) noexcept {
return;
}
nvinfer1::IPluginV2DynamicExt* AdaptivePool2d::clone() const noexcept {
try {
nvinfer1::IPluginV2DynamicExt* plugin =
new AdaptivePool2d(output_size_, pooling_type_);
plugin->setPluginNamespace(mNamespace.c_str());
return plugin;
} catch (std::exception const& e) {
FDASSERT(false, "clone failed: %s.", e.what());
}
return nullptr;
}
AdaptivePool2dPluginCreator::AdaptivePool2dPluginCreator() {
mPluginAttributes.clear();
mPluginAttributes.emplace_back(nvinfer1::PluginField(
"output_size", nullptr, nvinfer1::PluginFieldType::kINT32, 4));
mPluginAttributes.emplace_back(nvinfer1::PluginField(
"pooling_type", nullptr, nvinfer1::PluginFieldType::kCHAR, 3));
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
const char* AdaptivePool2dPluginCreator::getPluginName() const noexcept {
return "AdaptivePool2d";
}
const char* AdaptivePool2dPluginCreator::getPluginVersion() const noexcept {
return "1";
}
const nvinfer1::PluginFieldCollection*
AdaptivePool2dPluginCreator::getFieldNames() noexcept {
return &mFC;
}
nvinfer1::IPluginV2DynamicExt* AdaptivePool2dPluginCreator::createPlugin(
const char* name, const nvinfer1::PluginFieldCollection* fc) noexcept {
try {
const nvinfer1::PluginField* fields = fc->fields;
auto const dims = static_cast<int32_t const*>(fields[0].data);
output_size_.resize(4);
for (int64_t i = 0; i < 4; i++) {
output_size_[i] = dims[i];
}
const char* pooling_type_ptr = (static_cast<char const*>(fields[1].data));
std::string pooling_type(pooling_type_ptr, 3);
pooling_type_ = pooling_type;
return new AdaptivePool2d(output_size_, pooling_type_);
} catch (std::exception const& e) {
FDASSERT(false, "createPlugin failed: %s.", e.what());
}
return nullptr;
}
nvinfer1::IPluginV2DynamicExt* AdaptivePool2dPluginCreator::deserializePlugin(
const char* name, const void* serialData, size_t serialLength) noexcept {
try {
return new AdaptivePool2d(serialData, serialLength);
} catch (std::exception const& e) {
FDASSERT(false, "deserializePlugin failed: %s.", e.what());
}
return nullptr;
}
} // namespace fastdeploy