Files
FastDeploy/fastdeploy/vision/common/processors/normalize.cu
Wang Xinyu 044ab993d2 [CVCUDA] PP-OCR Cls & Rec preprocessor support CV-CUDA (#1470)
* ppocr cls preprocessor use manager

* hwc2chw cvcuda

* ppocr rec preproc use manager

* ocr rec preproc cvcuda

* fix rec preproc bug

* ppocr cls&rec preproc set normalize

* fix pybind

* address comment
2023-03-02 10:50:44 +08:00

117 lines
3.8 KiB
Plaintext

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef WITH_GPU
#include "fastdeploy/vision/common/processors/normalize.h"
namespace fastdeploy {
namespace vision {
__global__ void NormalizeKernel(const uint8_t* src, float* dst,
const float* alpha, const float* beta,
int num_channel, bool swap_rb, int batch_size,
int edge) {
int idx = blockDim.x * blockIdx.x + threadIdx.x;
if (idx >= edge) return;
int img_size = edge / batch_size;
int n = idx / img_size; // batch index
int p = idx - (n * img_size); // pixel index within the image
for (int i = 0; i < num_channel; ++i) {
int j = i;
if (swap_rb) {
j = 2 - i;
}
dst[num_channel * idx + j] =
src[num_channel * idx + j] * alpha[i] + beta[i];
}
}
bool Normalize::ImplByCuda(FDMat* mat) {
if (mat->layout != Layout::HWC) {
FDERROR << "The input data must be NHWC format!" << std::endl;
return false;
}
// Prepare input tensor
FDTensor* src = CreateCachedGpuInputTensor(mat);
src->ExpandDim(0);
FDMatBatch mat_batch;
mat_batch.SetTensor(src);
mat_batch.mat_type = ProcLib::CUDA;
mat_batch.input_cache = mat->input_cache;
mat_batch.output_cache = mat->output_cache;
bool ret = ImplByCuda(&mat_batch);
FDTensor* dst = mat_batch.Tensor();
dst->Squeeze(0);
mat->SetTensor(dst);
mat->mat_type = ProcLib::CUDA;
return true;
}
bool Normalize::ImplByCuda(FDMatBatch* mat_batch) {
if (mat_batch->layout != FDMatBatchLayout::NHWC) {
FDERROR << "The input data must be NHWC format!" << std::endl;
return false;
}
// Prepare input tensor
FDTensor* src = CreateCachedGpuInputTensor(mat_batch);
// Prepare output tensor
mat_batch->output_cache->Resize(src->Shape(), FDDataType::FP32,
"batch_output_cache", Device::GPU);
// Copy alpha and beta to GPU
gpu_alpha_.Resize({1, 1, static_cast<int>(alpha_.size())}, FDDataType::FP32,
"alpha", Device::GPU);
cudaMemcpy(gpu_alpha_.Data(), alpha_.data(), gpu_alpha_.Nbytes(),
cudaMemcpyHostToDevice);
gpu_beta_.Resize({1, 1, static_cast<int>(beta_.size())}, FDDataType::FP32,
"beta", Device::GPU);
cudaMemcpy(gpu_beta_.Data(), beta_.data(), gpu_beta_.Nbytes(),
cudaMemcpyHostToDevice);
int jobs =
mat_batch->output_cache->Numel() / mat_batch->output_cache->shape[3];
int threads = 256;
int blocks = ceil(jobs / (float)threads);
NormalizeKernel<<<blocks, threads, 0, mat_batch->Stream()>>>(
reinterpret_cast<uint8_t*>(src->Data()),
reinterpret_cast<float*>(mat_batch->output_cache->Data()),
reinterpret_cast<float*>(gpu_alpha_.Data()),
reinterpret_cast<float*>(gpu_beta_.Data()),
mat_batch->output_cache->shape[3], swap_rb_,
mat_batch->output_cache->shape[0], jobs);
mat_batch->SetTensor(mat_batch->output_cache);
mat_batch->mat_type = ProcLib::CUDA;
return true;
}
#ifdef ENABLE_CVCUDA
bool Normalize::ImplByCvCuda(FDMat* mat) { return ImplByCuda(mat); }
bool Normalize::ImplByCvCuda(FDMatBatch* mat_batch) {
return ImplByCuda(mat_batch);
}
#endif
} // namespace vision
} // namespace fastdeploy
#endif