Files
FastDeploy/fastdeploy/vision/common/processors/manager.h
guxukai c6480de736 [CVCUDA] Vision Processor Python API and Tutorial (#1394)
* bind success

* bind success fix

* FDMat pybind, ResizeByShort pybind

* FDMat pybind, ResizeByShort pybind, remove initialized_

* override BindProcessorManager::Run in python is available

* PyProcessorManager done

* vision_pybind fix

* manager.py fix

* add tutorials

* remove Apply() bind

* remove Apply() bind and fix

* fix reviewed problem

* fix reviewed problem

* fix reviewed problem readme

* fix reviewed problem readme etc

* apply return outputs

* nits

* update readme

* fix FDMatbatch

* add op pybind: CenterCrop, Pad

* add op overload for pass FDMatBatch

---------

Co-authored-by: Wang Xinyu <shaywxy@gmail.com>
2023-03-10 14:42:32 +08:00

102 lines
2.9 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/utils/utils.h"
#include "fastdeploy/vision/common/processors/mat.h"
#include "fastdeploy/vision/common/processors/mat_batch.h"
#include "fastdeploy/vision/common/processors/base.h"
namespace fastdeploy {
namespace vision {
class FASTDEPLOY_DECL ProcessorManager {
public:
~ProcessorManager();
/** \brief Use CUDA to boost the performance of processors
*
* \param[in] enable_cv_cuda ture: use CV-CUDA, false: use CUDA only
* \param[in] gpu_id GPU device id
* \return true if the preprocess successed, otherwise false
*/
void UseCuda(bool enable_cv_cuda = false, int gpu_id = -1);
bool CudaUsed();
#ifdef WITH_GPU
cudaStream_t Stream() const { return stream_; }
#endif
void SetStream(FDMat* mat) {
#ifdef WITH_GPU
mat->SetStream(stream_);
#endif
}
void SetStream(FDMatBatch* mat_batch) {
#ifdef WITH_GPU
mat_batch->SetStream(stream_);
#endif
}
void SyncStream() {
#ifdef WITH_GPU
FDASSERT(cudaStreamSynchronize(stream_) == cudaSuccess,
"[ERROR] Error occurs while sync cuda stream.");
#endif
}
int DeviceId() { return device_id_; }
/** \brief Process the input images and prepare input tensors for runtime
*
* \param[in] images The input image data list, all the elements are returned by cv::imread()
* \param[in] outputs The output tensors which will feed in runtime
* \return true if the preprocess successed, otherwise false
*/
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs);
/** \brief Apply() is the body of Run() function, it needs to be implemented by a derived class
*
* \param[in] image_batch The input image batch
* \param[in] outputs The output tensors which will feed in runtime
* \return true if the preprocess successed, otherwise false
*/
virtual bool Apply(FDMatBatch* image_batch,
std::vector<FDTensor>* outputs) = 0;
void PreApply(FDMatBatch* image_batch);
void PostApply();
protected:
ProcLib proc_lib_ = ProcLib::DEFAULT;
private:
#ifdef WITH_GPU
cudaStream_t stream_ = nullptr;
#endif
int device_id_ = -1;
std::vector<FDTensor> input_caches_;
std::vector<FDTensor> output_caches_;
FDTensor batch_input_cache_;
FDTensor batch_output_cache_;
};
} // namespace vision
} // namespace fastdeploy