mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* nvjpeg cmake * add common decoder, nvjpeg decoder and add image name predict api * ppclas support nvjpeg decoder * remove useless comments * image decoder support opencv * nvjpeg decode fallback to opencv * fdtensor add nbytes_allocated * single image decode api * fix bug * add pybind * ignore nvjpeg on jetson * fix cmake in * predict on fdmat * remove image names predict api, add image decoder tutorial * Update __init__.py * fix pybind
113 lines
3.5 KiB
C++
113 lines
3.5 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/common/image_decoder/image_decoder.h"
|
|
|
|
#include "opencv2/imgcodecs.hpp"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
ImageDecoder::ImageDecoder(ImageDecoderLib lib) {
|
|
if (lib == ImageDecoderLib::NVJPEG) {
|
|
#ifdef ENABLE_NVJPEG
|
|
nvjpeg::init_decoder(nvjpeg_params_);
|
|
#endif
|
|
}
|
|
lib_ = lib;
|
|
}
|
|
|
|
ImageDecoder::~ImageDecoder() {
|
|
if (lib_ == ImageDecoderLib::NVJPEG) {
|
|
#ifdef ENABLE_NVJPEG
|
|
nvjpeg::destroy_decoder(nvjpeg_params_);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
bool ImageDecoder::Decode(const std::string& img_name, FDMat* mat) {
|
|
std::vector<FDMat> mats(1);
|
|
mats[0] = std::move(*mat);
|
|
if (!BatchDecode({img_name}, &mats)) {
|
|
return false;
|
|
}
|
|
*mat = std::move(mats[0]);
|
|
return true;
|
|
}
|
|
|
|
bool ImageDecoder::BatchDecode(const std::vector<std::string>& img_names,
|
|
std::vector<FDMat>* mats) {
|
|
if (lib_ == ImageDecoderLib::OPENCV) {
|
|
return ImplByOpenCV(img_names, mats);
|
|
} else if (lib_ == ImageDecoderLib::NVJPEG) {
|
|
return ImplByNvJpeg(img_names, mats);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ImageDecoder::ImplByOpenCV(const std::vector<std::string>& img_names,
|
|
std::vector<FDMat>* mats) {
|
|
for (size_t i = 0; i < img_names.size(); ++i) {
|
|
cv::Mat im = cv::imread(img_names[i]);
|
|
(*mats)[i].SetMat(im);
|
|
(*mats)[i].layout = Layout::HWC;
|
|
(*mats)[i].SetWidth(im.cols);
|
|
(*mats)[i].SetHeight(im.rows);
|
|
(*mats)[i].SetChannels(im.channels());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ImageDecoder::ImplByNvJpeg(const std::vector<std::string>& img_names,
|
|
std::vector<FDMat>* mats) {
|
|
#ifdef ENABLE_NVJPEG
|
|
nvjpeg_params_.batch_size = img_names.size();
|
|
std::vector<nvjpegImage_t> output_imgs(nvjpeg_params_.batch_size);
|
|
std::vector<int> widths(nvjpeg_params_.batch_size);
|
|
std::vector<int> heights(nvjpeg_params_.batch_size);
|
|
// TODO(wangxinyu): support other output format
|
|
nvjpeg_params_.fmt = NVJPEG_OUTPUT_BGRI;
|
|
double total;
|
|
nvjpeg_params_.stream = (*mats)[0].Stream();
|
|
|
|
std::vector<FDTensor*> output_buffers;
|
|
for (size_t i = 0; i < mats->size(); ++i) {
|
|
FDASSERT((*mats)[i].output_cache != nullptr,
|
|
"The output_cache of FDMat was not set.");
|
|
output_buffers.push_back((*mats)[i].output_cache);
|
|
}
|
|
|
|
if (nvjpeg::process_images(img_names, nvjpeg_params_, total, output_imgs,
|
|
output_buffers, widths, heights)) {
|
|
// If nvJPEG decode failed, will fallback to OpenCV,
|
|
// e.g. png format is not supported by nvJPEG
|
|
FDWARNING << "nvJPEG decode failed, falling back to OpenCV for this batch"
|
|
<< std::endl;
|
|
return ImplByOpenCV(img_names, mats);
|
|
}
|
|
|
|
for (size_t i = 0; i < mats->size(); ++i) {
|
|
(*mats)[i].mat_type = ProcLib::CUDA;
|
|
(*mats)[i].layout = Layout::HWC;
|
|
(*mats)[i].SetTensor(output_buffers[i]);
|
|
}
|
|
#else
|
|
FDASSERT(false, "FastDeploy didn't compile with NVJPEG.");
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|