Files
FastDeploy/custom_ops/xpu_ops/test/test_draft_model_postprocess.py

94 lines
3.6 KiB
Python

# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
from fastdeploy.model_executor.ops.xpu import draft_model_postprocess
def draft_model_postprocess_cpu(
base_model_draft_tokens, # 2D列表: [bsz, base_model_draft_token_len] # 1D列表: [bsz]
base_model_seq_lens_encoder, # 1D列表: [bsz]
base_model_stop_flags, # 1D列表: [bsz]
):
bsz = base_model_draft_tokens.shape[0]
base_model_draft_token_len = base_model_draft_tokens.shape[1]
base_model_seq_lens_this_time = paddle.ones((bsz), dtype=paddle.int32)
# 遍历每个样本
for tid in range(bsz):
if (not base_model_stop_flags[tid]) and (base_model_seq_lens_encoder[tid] == 0):
# 获取当前样本的草稿token列表
base_model_draft_tokens_now = base_model_draft_tokens[tid]
token_num = 0
for i in range(base_model_draft_token_len):
if base_model_draft_tokens_now[i] != -1:
token_num += 1
# 更新序列长度
base_model_seq_lens_this_time[tid] = token_num
elif base_model_stop_flags[tid]:
# 已停止的样本序列长度为0
base_model_seq_lens_this_time[tid] = 0
return [base_model_seq_lens_this_time]
def test_draft_model_postprocess(batch_size=1, base_model_draft_token_len=8192): # 批次大小
paddle.seed(66)
base_model_draft_tokens = paddle.randint(
low=-1,
high=1,
shape=[batch_size, base_model_draft_token_len],
dtype="int64",
)
# base_model_seq_lens_this_time = paddle.ones((batch_size), dtype=paddle.int32)
base_model_seq_lens_encoder = paddle.randint(low=0, high=2, shape=[batch_size], dtype="int32")
random_floats = paddle.rand(shape=[batch_size])
base_model_stop_flags = random_floats >= 0.5
base_model_seq_lens_this_time = draft_model_postprocess_cpu(
base_model_draft_tokens, # 2D列表: [bsz, base_model_draft_token_len]
base_model_seq_lens_encoder, # 1D列表: [bsz]
base_model_stop_flags,
)
base_model_seq_lens_this_time_xpu = paddle.ones((batch_size), dtype=paddle.int32)
draft_model_postprocess(
base_model_draft_tokens, # 2D列表: [bsz, base_model_draft_token_len]
base_model_seq_lens_this_time_xpu, # 1D列表: [bsz]
base_model_seq_lens_encoder, # 1D列表: [bsz]
base_model_stop_flags,
)
print("test start")
assert np.allclose(base_model_seq_lens_this_time, base_model_seq_lens_this_time_xpu)
print("test passed")
def test_enough_cases():
test_draft_model_postprocess(100, 1024)
test_draft_model_postprocess(1, 11)
test_draft_model_postprocess(1, 8192)
test_draft_model_postprocess(2, 2048)
test_draft_model_postprocess(3, 1023)
test_draft_model_postprocess(4, 2047)
test_draft_model_postprocess(5, 4095)
test_draft_model_postprocess(10, 9191)
test_draft_model_postprocess(20, 618)
test_draft_model_postprocess(30, 703)
test_draft_model_postprocess(100, 1025)
test_draft_model_postprocess(1536, 1026)
if __name__ == "__main__":
test_enough_cases()