Files
FastDeploy/custom_ops/gpu_ops/moe/moe_ffn.cu
yangjianfengo1 e81046fdad 【New Feature】集中式支持w4afp8 (#3644)
* 支持tp w4afp8

* code style
2025-08-28 10:53:24 +08:00

578 lines
26 KiB
Plaintext

// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "cutlass/numeric_conversion.h"
#include "cutlass_kernels/w4a8_moe/cutlass_extensions/epilogue/epilogue_quant_helper.h"
#include "cutlass_kernels/w4a8_moe/w4a8_moe_gemm_kernel.h"
#include "group_swiglu_with_masked.h"
#include "helper.h"
#include "moe/fast_hardamard_kernel.h"
#include "moe/fused_moe_helper.h"
#include "w4afp8_gemm/w4afp8_gemm.h"
template <paddle::DataType T>
void MoeFFNKernel(const paddle::Tensor& permute_input,
const paddle::Tensor& tokens_expert_prefix_sum,
const paddle::Tensor& up_gate_proj_weight,
const paddle::Tensor& down_proj_weight,
const paddle::optional<paddle::Tensor>& up_gate_proj_bias,
const paddle::optional<paddle::Tensor>& up_gate_proj_scale,
const paddle::optional<paddle::Tensor>& down_proj_scale,
const paddle::optional<paddle::Tensor>& down_proj_in_scale,
const paddle::optional<paddle::Tensor>& expert_idx_per_token,
const std::string& quant_method,
paddle::Tensor ffn_out,
bool used_in_ep_low_latency,
const int estimate_total_token_nums) {
using namespace phi;
typedef PDTraits<T> traits_;
typedef typename traits_::DataType DataType_;
typedef typename traits_::data_t data_t;
auto quant_mode = cutlass::epilogue::QuantMode::PerChannelQuant;
auto ffn_out_data = ffn_out.data<data_t>();
auto place = permute_input.place();
auto stream = permute_input.stream();
auto fp16_moe_gemm_runner = MoeGemmRunner<DataType_, cutlass::WintQuantTraits<DataType_, cutlass::WintQuantMethod::kNone>>();
auto int8_moe_gemm_runner = MoeGemmRunner<DataType_, cutlass::WintQuantTraits<DataType_, cutlass::WintQuantMethod::kWeightOnlyInt8>>();
auto int4_moe_gemm_runner = MoeGemmRunner<DataType_, cutlass::WintQuantTraits<DataType_, cutlass::WintQuantMethod::kWeightOnlyInt4>>();
auto w4a8_moe_gemm_runner = W4A8MoeGemmRunner<DataType_, int8_t, cutlass::uint4b_t>();
assert(permute_input.dims().size() == 3 || permute_input.dims().size() == 2);
const int num_experts = up_gate_proj_weight.dims()[0];
const int hidden_size = permute_input.dims()[permute_input.dims().size() - 1];
assert(up_gate_proj_weight.dims().size() == 3);
int inter_dim = up_gate_proj_weight.dims()[1] * up_gate_proj_weight.dims()[2] / hidden_size;
constexpr size_t workspace_size = 1 * 1024 * 1024 * 1024; // for nf4 stream-k
Allocator* allocator = paddle::GetAllocator(place);
Allocator::AllocationPtr workspace;
if (quant_method == "weight_only_int4" || quant_method == "w4a8" || quant_method == "w4afp8") {
inter_dim = inter_dim * 2;
}
if (quant_method == "w4a8" || quant_method == "w4afp8") {
workspace = allocator->Allocate(
SizeOf(paddle::DataType::INT8) * workspace_size);
}
const int64_t inter_size = inter_dim;
typedef PDTraits<paddle::DataType::FLOAT8_E4M3FN> traits_fp8;
typedef typename traits_fp8::DataType DataType_fp8;
typedef typename traits_fp8::data_t data_t_fp8;
int num_experts_ = num_experts;
int num_max_tokens_per_expert = 256;
int expanded_active_expert_rows;
paddle::Tensor fc1_out_tensor;
if (permute_input.dims().size() == 3) {
num_experts_ = permute_input.dims()[0];
assert(num_experts == num_experts_);
num_max_tokens_per_expert = permute_input.dims()[1];
expanded_active_expert_rows = num_experts_ * num_max_tokens_per_expert;
fc1_out_tensor = GetEmptyTensor(
{num_experts_, num_max_tokens_per_expert, inter_size}, T, place);
} else {
expanded_active_expert_rows = permute_input.dims()[0];
fc1_out_tensor = GetEmptyTensor(
{expanded_active_expert_rows, inter_size}, T, place);
}
auto fc1_out = fc1_out_tensor.data<data_t>();
using NvType = typename traits_::DataType;
auto fc1_expert_biases =
up_gate_proj_bias
? const_cast<paddle::Tensor*>(up_gate_proj_bias.get_ptr())->data<data_t>()
: nullptr;
// This is a trick.
// expanded_active_expert_rows is not needed in variable group gemm.
// but is needed in accommodating deepep low latency mode
const int64_t total_rows_in_ll_else_minus1 = used_in_ep_low_latency ? expanded_active_expert_rows : -1;
// When we tune the optimal configuration, we need the actual total_rows.
const int64_t tune_total_rows = expanded_active_expert_rows;
if (quant_method == "weight_only_int8") {
typename cutlass::WintQuantTraits<DataType_, cutlass::WintQuantMethod::kWeightOnlyInt8>::Arguments quant_args;
int8_moe_gemm_runner.moe_gemm_bias_act(
reinterpret_cast<const NvType*>(permute_input.data<data_t>()),
reinterpret_cast<const uint8_t*>(up_gate_proj_weight.data<int8_t>()),
reinterpret_cast<const NvType*>(
const_cast<paddle::Tensor*>(up_gate_proj_scale.get_ptr())
->data<data_t>()),
reinterpret_cast<const NvType*>(fc1_expert_biases),
reinterpret_cast<NvType*>(fc1_out),
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
total_rows_in_ll_else_minus1,
tune_total_rows,
inter_size,
hidden_size,
num_experts,
quant_args,
"none",
stream);
} else if (quant_method == "weight_only_int4") {
typename cutlass::WintQuantTraits<DataType_, cutlass::WintQuantMethod::kWeightOnlyInt4>::Arguments quant_args;
int4_moe_gemm_runner.moe_gemm_bias_act(
reinterpret_cast<const NvType*>(permute_input.data<data_t>()),
reinterpret_cast<const cutlass::uint4b_t*>(
up_gate_proj_weight.data<int8_t>()),
reinterpret_cast<const NvType*>(
const_cast<paddle::Tensor*>(up_gate_proj_scale.get_ptr())
->data<data_t>()),
reinterpret_cast<const NvType*>(fc1_expert_biases),
reinterpret_cast<NvType*>(fc1_out),
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
total_rows_in_ll_else_minus1,
tune_total_rows,
inter_size,
hidden_size,
num_experts,
quant_args,
"none",
stream);
} else if (quant_method == "w4a8") {
w4a8_moe_gemm_runner.moe_gemm(
reinterpret_cast<const int8_t *>(permute_input.data<int8_t>()),
reinterpret_cast<const cutlass::uint4b_t *>(
up_gate_proj_weight.data<int8_t>()),
quant_mode,
reinterpret_cast<const NvType*>(
const_cast<paddle::Tensor*>(up_gate_proj_scale.get_ptr())
->data<data_t>()),
nullptr, // up_gate_proj_scale_dyquant
nullptr, // nf4_look_up_table
reinterpret_cast<NvType *>(fc1_out),
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
total_rows_in_ll_else_minus1,
used_in_ep_low_latency ? estimate_total_token_nums : tune_total_rows,
inter_size,
hidden_size,
reinterpret_cast<char*>(workspace->ptr()),
workspace_size,
num_experts,
stream);
} else if (quant_method == "w4afp8") {
typedef PDTraits<paddle::DataType::FLOAT8_E4M3FN> traits_fp8;
typedef typename traits_fp8::DataType DataType_fp8;
typedef typename traits_fp8::data_t data_t_fp8;
Allocator::AllocationPtr ffn1_input_row_sum;
ffn1_input_row_sum = allocator->Allocate(
sizeof(float) * expanded_active_expert_rows);
compute_row_sum(
permute_input.data<data_t_fp8>(),
expanded_active_expert_rows,
hidden_size,
reinterpret_cast<float*>(ffn1_input_row_sum->ptr()),
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
num_max_tokens_per_expert,
used_in_ep_low_latency,
stream);
float* row_scale = nullptr;
DisPatchW4AFp8GemmWrapper(
reinterpret_cast<const DataType_fp8 *>(permute_input.data<data_t_fp8>()),
reinterpret_cast<const DataType_fp8 *>(up_gate_proj_weight.data<int8_t>()),
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
reinterpret_cast<float*>(ffn1_input_row_sum->ptr()),
row_scale,
const_cast<paddle::Tensor*>(up_gate_proj_scale.get_ptr())
->data<float>(),
reinterpret_cast<NvType *>(fc1_out),
used_in_ep_low_latency ? num_max_tokens_per_expert : 0,
used_in_ep_low_latency ? num_max_tokens_per_expert : permute_input.dims()[0],
num_experts,
inter_size,
hidden_size,
stream);
} else {
typename cutlass::WintQuantTraits<DataType_, cutlass::WintQuantMethod::kNone>::Arguments quant_args;
fp16_moe_gemm_runner.moe_gemm_bias_act(
reinterpret_cast<const NvType*>(permute_input.data<data_t>()),
reinterpret_cast<const NvType*>(up_gate_proj_weight.data<data_t>()),
nullptr,
reinterpret_cast<const NvType*>(fc1_expert_biases),
reinterpret_cast<NvType*>(fc1_out),
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
total_rows_in_ll_else_minus1,
tune_total_rows,
inter_size,
hidden_size,
num_experts,
quant_args,
"none",
stream);
}
paddle::Tensor act_out_tensor;
if (used_in_ep_low_latency) {
act_out_tensor = GroupSwigluWithMasked(fc1_out_tensor, tokens_expert_prefix_sum);
} else {
act_out_tensor = paddle::experimental::swiglu(fc1_out_tensor, nullptr);
}
auto act_out = act_out_tensor.data<data_t>();
if (quant_method == "weight_only_int8") {
typename cutlass::WintQuantTraits<DataType_, cutlass::WintQuantMethod::kWeightOnlyInt8>::Arguments quant_args;
int8_moe_gemm_runner.moe_gemm(
reinterpret_cast<const NvType*>(act_out),
reinterpret_cast<const uint8_t*>(down_proj_weight.data<int8_t>()),
reinterpret_cast<const NvType*>(
const_cast<paddle::Tensor*>(down_proj_scale.get_ptr())
->data<data_t>()),
reinterpret_cast<NvType*>(ffn_out_data),
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
total_rows_in_ll_else_minus1,
tune_total_rows,
hidden_size,
inter_size / 2,
num_experts,
quant_args,
stream);
} else if (quant_method == "weight_only_int4") {
typename cutlass::WintQuantTraits<DataType_, cutlass::WintQuantMethod::kWeightOnlyInt4>::Arguments quant_args;
int4_moe_gemm_runner.moe_gemm(
reinterpret_cast<const NvType*>(act_out),
reinterpret_cast<const cutlass::uint4b_t*>(
down_proj_weight.data<int8_t>()),
reinterpret_cast<const NvType*>(
const_cast<paddle::Tensor*>(down_proj_scale.get_ptr())
->data<data_t>()),
reinterpret_cast<NvType*>(ffn_out_data),
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
total_rows_in_ll_else_minus1,
tune_total_rows,
hidden_size,
inter_size / 2,
num_experts,
quant_args,
stream);
} else if (quant_method == "w4a8") {
data_t *down_proj_shift = nullptr;
data_t *down_proj_smooth = nullptr;
Allocator::AllocationPtr int8_act_out;
int8_act_out = allocator->Allocate(
SizeOf(paddle::DataType::INT8) * act_out_tensor.numel());
MoeFastHardamardWrapper<data_t, int8_t>(
act_out_tensor.data<data_t>(),
expert_idx_per_token ? expert_idx_per_token.get().data<int64_t>() : nullptr,
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
down_proj_shift, // down_proj_shift->data<T>(),
down_proj_smooth, // down_proj_smooth->data<T>(),
down_proj_in_scale ? const_cast<paddle::Tensor*>(down_proj_in_scale.get_ptr())->data<float>() : nullptr,
1,
127.0,
-127.0,
expanded_active_expert_rows,
inter_size / 2,
num_max_tokens_per_expert,
used_in_ep_low_latency,
reinterpret_cast<int8_t *>(int8_act_out->ptr()),
stream
);
w4a8_moe_gemm_runner.moe_gemm(
reinterpret_cast<int8_t *>(int8_act_out->ptr()),
reinterpret_cast<const cutlass::uint4b_t *>(
down_proj_weight.data<int8_t>()),
quant_mode,
reinterpret_cast<const NvType*>(
const_cast<paddle::Tensor*>(down_proj_scale.get_ptr())
->data<data_t>()),
nullptr, // down_proj_scale_dyquant
nullptr, // reinterpret_cast<const int32_t*>(d_nf4_look_up_table), // nf4_look_up_table
reinterpret_cast<NvType *>(ffn_out_data),
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
total_rows_in_ll_else_minus1,
used_in_ep_low_latency ? estimate_total_token_nums : tune_total_rows,
hidden_size,
inter_size / 2,
reinterpret_cast<char*>(workspace->ptr()),
workspace_size,
num_experts,
stream);
} else if (quant_method == "w4afp8") {
data_t *ffn2_shift = nullptr;
data_t *ffn2_smooth = nullptr;
float* row_scale = nullptr;
Allocator::AllocationPtr fp8_act_out;
fp8_act_out = allocator->Allocate(
SizeOf(paddle::DataType::INT8) * act_out_tensor.numel());
Allocator::AllocationPtr ffn2_input_row_sum;
ffn2_input_row_sum = allocator->Allocate(
sizeof(float) * expanded_active_expert_rows);
// note(yuanxiaolan): optimize this
MoeFastHardamardWrapper<data_t, data_t>(
act_out_tensor.data<data_t>(),
expert_idx_per_token ? expert_idx_per_token.get().data<int64_t>() : nullptr,
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
ffn2_shift, // ffn2_shift->data<T>(),
ffn2_smooth, // ffn2_smooth->data<T>(),
nullptr,
1,
448.0f,
-448.0f,
expanded_active_expert_rows,
inter_size / 2,
num_max_tokens_per_expert,
used_in_ep_low_latency,
act_out_tensor.data<data_t>(),
stream
);
quantize_moe_input<data_t, data_t_fp8>(act_out_tensor.data<data_t>(),
expert_idx_per_token ? expert_idx_per_token.get().data<int64_t>() : nullptr,
down_proj_in_scale ? const_cast<paddle::Tensor*>(down_proj_in_scale.get_ptr())->data<float>() : nullptr,
448.0f,
-448.0f,
expanded_active_expert_rows,
inter_size / 2,
reinterpret_cast<float*>(ffn2_input_row_sum->ptr()),
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
num_max_tokens_per_expert,
used_in_ep_low_latency,
reinterpret_cast<data_t_fp8 *>(fp8_act_out->ptr()),
stream
);
DisPatchW4AFp8GemmWrapper(
reinterpret_cast<const DataType_fp8 *>(fp8_act_out->ptr()),
reinterpret_cast<const DataType_fp8 *>(down_proj_weight.data<int8_t>()),
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
reinterpret_cast<float*>(ffn2_input_row_sum->ptr()),
row_scale,
const_cast<paddle::Tensor*>(down_proj_scale.get_ptr())
->data<float>(),
reinterpret_cast<NvType*>(ffn_out_data),
used_in_ep_low_latency ? num_max_tokens_per_expert : 0,
used_in_ep_low_latency ? num_max_tokens_per_expert : act_out_tensor.dims()[0],
num_experts,
hidden_size,
inter_size / 2,
stream);
} else {
typename cutlass::WintQuantTraits<DataType_, cutlass::WintQuantMethod::kNone>::Arguments quant_args;
fp16_moe_gemm_runner.moe_gemm(
reinterpret_cast<const NvType*>(act_out),
reinterpret_cast<const NvType*>(down_proj_weight.data<data_t>()),
nullptr,
reinterpret_cast<NvType*>(ffn_out_data),
const_cast<int64_t*>(tokens_expert_prefix_sum.data<int64_t>()),
total_rows_in_ll_else_minus1,
tune_total_rows,
hidden_size,
inter_size / 2,
num_experts,
quant_args,
stream);
}
}
paddle::Tensor MoeExpertFFNFunc(
const paddle::Tensor& permute_input,
const paddle::Tensor& tokens_expert_prefix_sum,
const paddle::Tensor& up_gate_proj_weight,
const paddle::Tensor& down_proj_weight,
const paddle::optional<paddle::Tensor>& up_gate_proj_bias,
const paddle::optional<paddle::Tensor>& up_gate_proj_scale,
const paddle::optional<paddle::Tensor>& down_proj_scale,
const paddle::optional<paddle::Tensor>& down_proj_in_scale,
const paddle::optional<paddle::Tensor>& expert_idx_per_token,
const std::string& quant_method, const bool used_in_ep_low_latency,
const int estimate_total_token_nums) {
const auto t_type = (quant_method == "w4a8") ? up_gate_proj_scale.get().dtype() :
(quant_method == "w4afp8") ? paddle::DataType::BFLOAT16 :
permute_input.dtype();
auto ffn_out = paddle::empty_like(permute_input, t_type);
switch (t_type) {
case paddle::DataType::BFLOAT16:
MoeFFNKernel<paddle::DataType::BFLOAT16>(permute_input,
tokens_expert_prefix_sum,
up_gate_proj_weight,
down_proj_weight,
up_gate_proj_bias,
up_gate_proj_scale,
down_proj_scale,
down_proj_in_scale,
expert_idx_per_token,
quant_method,
ffn_out,
used_in_ep_low_latency,
estimate_total_token_nums);
break;
case paddle::DataType::FLOAT16:
MoeFFNKernel<paddle::DataType::FLOAT16>(permute_input,
tokens_expert_prefix_sum,
up_gate_proj_weight,
down_proj_weight,
up_gate_proj_bias,
up_gate_proj_scale,
down_proj_scale,
down_proj_in_scale,
expert_idx_per_token,
quant_method,
ffn_out,
used_in_ep_low_latency,
estimate_total_token_nums);
break;
default:
PD_THROW("Unsupported data type for MoeExpertFFN");
}
return ffn_out;
}
std::vector<paddle::Tensor> MoeExpertFFN(
const paddle::Tensor& permute_input,
const paddle::Tensor& tokens_expert_prefix_sum,
const paddle::Tensor& up_gate_proj_weight,
const paddle::Tensor& down_proj_weight,
const paddle::optional<paddle::Tensor>& up_gate_proj_bias,
const paddle::optional<paddle::Tensor>& up_gate_proj_scale,
const paddle::optional<paddle::Tensor>& down_proj_scale,
const paddle::optional<paddle::Tensor>& down_proj_in_scale,
const paddle::optional<paddle::Tensor>& expert_idx_per_token,
const std::string& quant_method, const bool used_in_ep_low_latency,
const int estimate_total_token_nums) {
return {MoeExpertFFNFunc(permute_input,
tokens_expert_prefix_sum,
up_gate_proj_weight,
down_proj_weight,
up_gate_proj_bias,
up_gate_proj_scale,
down_proj_scale,
down_proj_in_scale,
expert_idx_per_token,
quant_method,
used_in_ep_low_latency,
estimate_total_token_nums)};
}
std::vector<std::vector<int64_t>> MoeExpertFFNInferShape(
const std::vector<int64_t>& permute_input_shape,
const std::vector<int64_t>& tokens_expert_prefix_sum_shape,
const std::vector<int64_t>& up_gate_proj_weight_shape,
const std::vector<int64_t>& down_proj_weight_shape,
const paddle::optional<std::vector<int64_t>>& up_gate_proj_bias_shape,
const paddle::optional<std::vector<int64_t>>& up_gate_proj_scale_shape,
const paddle::optional<std::vector<int64_t>>& down_proj_scale_shape,
const paddle::optional<std::vector<int64_t>>& down_proj_in_scale_shape,
const paddle::optional<std::vector<int64_t>>& expert_idx_per_token_shape,
const std::string& quant_method,
const bool used_in_ep_low_latency,
const int estimate_total_token_nums) {
return {permute_input_shape};
}
std::vector<paddle::DataType> MoeExpertFFNInferDtype(
const paddle::DataType &permute_input_dtype,
const paddle::DataType &tokens_expert_prefix_sum_dtype,
const paddle::DataType &up_gate_proj_weight_dtype,
const paddle::DataType &down_proj_weight_dtype,
const paddle::optional<paddle::DataType> &up_gate_proj_bias_dtype,
const paddle::optional<paddle::DataType> &up_gate_proj_scale_dtype,
const paddle::optional<paddle::DataType> &down_proj_scale_dtype,
const paddle::optional<paddle::DataType> &down_proj_in_scale_dtype,
const std::string &quant_method, const bool used_in_ep_low_latency,
const int estimate_total_token_nums) {
if (quant_method == "w4a8" || quant_method == "w4afp8") {
return {up_gate_proj_scale_dtype.get()};
} else {
return {permute_input_dtype};
}
}
/**
* @brief Mixture of Experts (MoE) Feed-Forward Network Operator
*
* This operator performs the expert computation in MoE architecture, including:
* 1. First linear transformation (up_gate_proj) with optional quantization
* 2. SwiGLU activation function
* 3. Second linear transformation (down_proj) with optional quantization
*
* Supports multiple quantization methods including weight-only int4/int8 and w4a8 quantization.
*
* Inputs:
* - permute_input: Permuted input tensor organized by expert
* Shape: [total_tokens * top_k, hidden_size]
* dtype: bfloat16/float16 (or int8 for w4a8)
* - tokens_expert_prefix_sum: Prefix sum array of token counts per expert for group_gemm
* Shape: [num_experts]
* dtype: int64
* - up_gate_proj_weight: First FFN layer weights
* Shape: [num_experts, inter_size * 2, hidden_size]
* dtype: Same as input (unquantized) or int8 (quantized)
* - down_proj_weight: Second FFN layer weights
* Shape: [num_experts, hidden_size, inter_size]
* dtype: Same as input (unquantized) or int8 (quantized)
* - up_gate_proj_bias: Optional bias for first FFN layer
* Shape: [num_experts, inter_size * 2]
* dtype: Same as input
* - up_gate_proj_scale: Quantization scales for first FFN layer
* Shape: [num_experts, inter_size * 2]
* dtype: Same as input
* - down_proj_scale: Quantization scales for second FFN layer
* Shape: [num_experts, hidden_size]
* dtype: Same as input
* - down_proj_in_scale: Optional input scales for second FFN layer (w4a8 only)
* dtype: float32
* - expert_idx_per_token: Optional expert indices per token (w4a8 only)
* Shape: [total_tokens]
* dtype: int64
*
* Outputs:
* - output_tensor: Output tensor after MoE FFN computation
* Shape: Same as permute_input
* dtype: Same as input (or up_gate_proj_scale dtype for w4a8)
*
* Attributes:
* - quant_method: Quantization method to use
* Options: "none", "weight_only_int4", "weight_only_int8", "w4a8"
* - used_in_ep_low_latency: Whether running in low latency mode
* Affects activation function implementation
*
* Note:
* - w4a8 mode requires additional workspace memory allocation
* - Low latency mode uses specialized grouped SwiGLU implementation
*/
PD_BUILD_STATIC_OP(moe_expert_ffn)
.Inputs({"permute_input",
"tokens_expert_prefix_sum",
"up_gate_proj_weight",
"down_proj_weight",
paddle::Optional("up_gate_proj_bias"),
paddle::Optional("up_gate_proj_scale"),
paddle::Optional("down_proj_scale"),
paddle::Optional("down_proj_in_scale"),
paddle::Optional("expert_idx_per_token")})
.Outputs({"output_tensor"})
.Attrs({"quant_method:std::string", "used_in_ep_low_latency:bool", "estimate_total_token_nums:int"})
.SetKernelFn(PD_KERNEL(MoeExpertFFN))
.SetInferShapeFn(PD_INFER_SHAPE(MoeExpertFFNInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(MoeExpertFFNInferDtype));