Files
FastDeploy/custom_ops/gpu_ops/moe/moe_dispatch.cu
2025-09-01 17:50:17 +08:00

307 lines
13 KiB
Plaintext

// Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Ignore CUTLASS warnings about type punning
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#pragma GCC diagnostic ignored "-Wunused-function"
#pragma once
#include "moe/fused_moe_helper.h"
#include "moe/fused_moe_op.h"
#pragma GCC diagnostic pop
#include "helper.h"
template <paddle::DataType T>
void MoeDispatchKernel(
const paddle::Tensor &input, const paddle::Tensor &gating_output,
const paddle::optional<paddle::Tensor> &gating_correction_bias,
const paddle::optional<paddle::Tensor> &w4a8_in_scale, const int moe_topk,
const bool group_moe, const bool topk_only_mode, const int num_rows,
const int hidden_size, const int expert_num, paddle::Tensor *permute_input,
paddle::Tensor *tokens_expert_prefix_sum,
paddle::Tensor *permute_indices_per_token, paddle::Tensor *topk_weight,
paddle::Tensor *topk_idx, paddle::Tensor *expert_idx_per_token) {
using namespace phi;
typedef PDTraits<T> traits_;
typedef typename traits_::DataType DataType_;
typedef typename traits_::data_t data_t;
auto stream = input.stream();
auto place = input.place();
if (group_moe) {
// Check if expert_num is divisible by moe_topk, else throw an error
PADDLE_ENFORCE_EQ(expert_num % moe_topk, 0,
common::errors::InvalidArgument(
"The number of experts (expert_num) "
"must be divisible by moe_topk. "
"Got expert_num = %d and moe_topk = %d.",
expert_num, moe_topk));
}
const int num_moe_inputs = AlignTo16(num_rows * moe_topk);
const int bytes = num_moe_inputs * sizeof(int);
CubKeyValueSorter sorter_;
sorter_.update_num_experts(expert_num);
const int sorter_ws_size_bytes =
AlignTo16(sorter_.getWorkspaceSize(moe_topk * num_rows));
const int sort_tmp_in_out_size = num_moe_inputs * 2 * sizeof(int);
paddle::Tensor ws_ptr_tensor =
GetEmptyTensor({bytes + sorter_ws_size_bytes + sort_tmp_in_out_size},
paddle::DataType::INT8, place);
int8_t *ws_ptr = ws_ptr_tensor.data<int8_t>();
int *source_rows_ = reinterpret_cast<int *>(ws_ptr);
int8_t *sorter_ws_ptr = reinterpret_cast<int8_t *>(ws_ptr + bytes);
int *permuted_experts_ =
reinterpret_cast<int *>(sorter_ws_ptr + sorter_ws_size_bytes);
int *permuted_rows_ = permuted_experts_ + num_moe_inputs;
int *topk_idx_ptr = topk_idx->data<int>();
float *softmax_max_prob = nullptr;
if (group_moe) {
paddle::Tensor softmax_max_prob_tensor =
GetEmptyTensor({num_rows, moe_topk}, paddle::DataType::FLOAT32, place);
// (TODO: check fill success ?)
paddle::experimental::fill(softmax_max_prob_tensor, 0.f);
softmax_max_prob = softmax_max_prob_tensor.data<float>();
}
float *softmax_out_;
const bool is_pow_2 =
(expert_num != 0) && ((expert_num & (expert_num - 1)) == 0);
paddle::Tensor softmax_buffer;
if (!is_pow_2 || expert_num > 256 || group_moe || gating_correction_bias) {
softmax_buffer = GetEmptyTensor({num_rows * expert_num},
paddle::DataType::FLOAT32, place);
softmax_out_ = softmax_buffer.data<float>();
} else {
softmax_out_ = nullptr;
}
topk_gating_softmax_kernelLauncher<float, int>::run(
gating_output.data<float>(),
gating_correction_bias ? gating_correction_bias.get().data<float>()
: nullptr,
topk_weight->data<float>(), softmax_out_, topk_idx_ptr, source_rows_,
softmax_max_prob, num_rows, expert_num, moe_topk, group_moe, stream,
topk_only_mode);
sorter_.run(reinterpret_cast<void *>(sorter_ws_ptr), sorter_ws_size_bytes,
topk_idx_ptr, expert_idx_per_token->data<int32_t>(), source_rows_,
permuted_rows_, moe_topk * num_rows, false, stream);
if (w4a8_in_scale) {
if (permute_input->dtype() == paddle::DataType::INT8) {
initialize_moe_routing_kernelLauncher<data_t, int8_t>::run(
input.data<data_t>(), permute_input->data<int8_t>(), permuted_rows_,
expert_idx_per_token->data<int32_t>(), w4a8_in_scale->data<float>(),
permute_indices_per_token->data<int32_t>(), num_rows, num_rows,
hidden_size, moe_topk, stream);
} else if (permute_input->dtype() == paddle::DataType::FLOAT8_E4M3FN) {
initialize_moe_routing_kernelLauncher<data_t, float8_e4m3fn>::run(
input.data<data_t>(), permute_input->data<float8_e4m3fn>(),
permuted_rows_, expert_idx_per_token->data<int32_t>(),
w4a8_in_scale->data<float>(),
permute_indices_per_token->data<int32_t>(), num_rows, num_rows,
hidden_size, moe_topk, stream);
}
} else {
initialize_moe_routing_kernelLauncher<data_t>::run(
input.data<data_t>(), permute_input->data<data_t>(), permuted_rows_,
expert_idx_per_token->data<int32_t>(), nullptr,
permute_indices_per_token->data<int32_t>(), num_rows, num_rows,
hidden_size, moe_topk, stream);
}
compute_total_rows_before_expert(
expert_idx_per_token->data<int32_t>(), moe_topk * num_rows, expert_num,
tokens_expert_prefix_sum->data<int64_t>(), stream);
}
std::vector<paddle::Tensor> MoeExpertDispatch(
const paddle::Tensor &input, const paddle::Tensor &gating_output,
const paddle::optional<paddle::Tensor> &gating_correction_bias,
const paddle::optional<paddle::Tensor> &w4a8_in_scale, const int moe_topk,
const bool group_moe, const std::string &moe_quant_type, const bool topk_only_mode) {
const auto input_type = input.dtype();
auto place = input.place();
int token_rows = 0;
auto input_dims = input.dims();
auto gating_dims = gating_output.dims();
const int expert_num = gating_dims[gating_dims.size() - 1];
if (input_dims.size() == 3) {
token_rows = input_dims[0] * input_dims[1];
} else {
token_rows = input_dims[0];
}
const int num_rows = token_rows;
const int hidden_size = input.dims()[input_dims.size() - 1];
auto permute_input_dtype = input_type;
if (w4a8_in_scale) {
if (moe_quant_type == "w4a8") {
permute_input_dtype = paddle::DataType::INT8;
} else if (moe_quant_type == "w4afp8") {
permute_input_dtype = paddle::DataType::FLOAT8_E4M3FN;
}
}
auto permute_input = GetEmptyTensor({moe_topk * num_rows, hidden_size},
permute_input_dtype, place);
// correspond to the weighted coefficients of the results from each expert.
auto topk_weight =
GetEmptyTensor({num_rows, moe_topk}, paddle::DataType::FLOAT32, place);
auto topk_idx =
GetEmptyTensor({num_rows, moe_topk}, paddle::DataType::INT32, place);
auto tokens_expert_prefix_sum =
GetEmptyTensor({expert_num}, paddle::DataType::INT64, place);
auto permute_indices_per_token =
GetEmptyTensor({moe_topk, num_rows}, paddle::DataType::INT32, place);
auto expert_idx_per_token =
GetEmptyTensor({num_rows * moe_topk}, paddle::DataType::INT32, place);
switch (input_type) {
case paddle::DataType::BFLOAT16:
MoeDispatchKernel<paddle::DataType::BFLOAT16>(
input, gating_output, gating_correction_bias, w4a8_in_scale, moe_topk,
group_moe, topk_only_mode, num_rows, hidden_size, expert_num,
&permute_input, &tokens_expert_prefix_sum, &permute_indices_per_token,
&topk_weight, &topk_idx, &expert_idx_per_token);
break;
case paddle::DataType::FLOAT16:
MoeDispatchKernel<paddle::DataType::FLOAT16>(
input, gating_output, gating_correction_bias, w4a8_in_scale, moe_topk,
group_moe, topk_only_mode, num_rows, hidden_size, expert_num,
&permute_input, &tokens_expert_prefix_sum, &permute_indices_per_token,
&topk_weight, &topk_idx, &expert_idx_per_token);
break;
default:
PD_THROW("Unsupported data type for MoeDispatchKernel");
}
return {permute_input,
tokens_expert_prefix_sum,
permute_indices_per_token,
topk_weight,
topk_idx,
expert_idx_per_token};
}
std::vector<std::vector<int64_t>> MoeExpertDispatchInferShape(
const std::vector<int64_t> &input_shape,
const std::vector<int64_t> &gating_output_shape,
const paddle::optional<std::vector<int64_t>> &bias_shape,
const int moe_topk) {
int token_rows = -1;
if (input_shape.size() == 3) {
token_rows = input_shape[0] * input_shape[1];
} else {
token_rows = input_shape[0];
}
const int expert_num = gating_output_shape[gating_output_shape.size() - 1];
const int num_rows = token_rows;
const int hidden_size = input_shape[input_shape.size() - 1];
const int permuted_rows = num_rows == -1 ? -1 : moe_topk * num_rows;
return {{permuted_rows, hidden_size},
{expert_num},
{moe_topk, num_rows},
{num_rows, moe_topk},
{num_rows, moe_topk},
{permuted_rows}};
}
std::vector<paddle::DataType>
MoeExpertDispatchInferDtype(const paddle::DataType &input_dtype,
const paddle::DataType &gating_output_dtype,
const paddle::optional<paddle::DataType> &bias_type,
const int moe_topk) {
return {input_dtype, paddle::DataType::INT64, paddle::DataType::INT32,
paddle::DataType::FLOAT32, paddle::DataType::INT32, paddle::DataType::INT32};
}
/**
* @brief Mixture of Experts (MoE) Expert Dispatch Operator
*
* This operator performs the following key functions:
* 1. Computes top-k experts for each input token based on gating scores
* 2. Permutes input tokens according to their selected experts for efficient expert processing
* 3. Computes prefix sums of tokens per expert for group_gemm optimization
*
* Inputs:
* - input: The input tensor to be routed to experts
* Shape: [total_tokens, hidden_size]
* dtype: bfloat16 or float16
* - gating_output: Gating network output scores for each token-expert pair
* Shape: [total_tokens, expert_num]
* dtype: must be float32
* - gating_correction_bias: Optional bias term for gating correction (expert_num)
*
* Outputs:
* - permute_input: Permuted input tensor organized by expert
* Shape: [moe_topk * total_tokens, hidden_size]
* dtype: Same as input
* - tokens_expert_prefix_sum: Prefix sum array of token counts per expert for group_gemm
* Shape: [expert_num]
* dtype: int64
* - permute_indices_per_token: Indices mapping for reconstructing original order
* Shape: [moe_topk, total_tokens]
* dtype: int32
* - top_k_weight: Weight coefficients for combining expert outputs
* Shape: [total_tokens, moe_topk]
* dtype: float32
* - top_k_indices: Indices of selected top-k experts for each token
* Shape: [total_tokens, moe_topk]
* dtype: int32
*
* Attributes:
* - moe_topk: Number of experts to select for each token (k value in top-k routing)
* - group_moe: Whether to perform group softmax within the operator
* (true: softmax is computed within groups of experts,
* false: standard softmax across all experts)
* - topk_only_mode: Operation mode selector
* (true: only performs topk selection without softmax,
* false: performs full softmax+topk computation)
*
* Note:
* - The operator requires 2D input format [total_tokens, hidden_size]
* - For optimal performance, expert_num should be a power of 2 when possible
* - When group_moe is true, expert_num must be divisible by moe_topk
*/
PD_BUILD_STATIC_OP(moe_expert_dispatch)
.Inputs({"input", "gating_output",
paddle::Optional("gating_correction_bias"),
paddle::Optional("w4a8_in_scale")})
.Outputs({"permute_input", "tokens_expert_prefix_sum",
"permute_indices_per_token", "topk_weight", "topk_idx",
"expert_idx_per_token"})
.Attrs({"moe_topk:int", "group_moe:bool", "moe_quant_type:std::string", "topk_only_mode:bool"})
.SetKernelFn(PD_KERNEL(MoeExpertDispatch))
.SetInferShapeFn(PD_INFER_SHAPE(MoeExpertDispatchInferShape))
.SetInferDtypeFn(PD_INFER_DTYPE(MoeExpertDispatchInferDtype));