mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Add initial support for NVIDIA Blackwell (SM100) architecture This change introduces initial support for the NVIDIA Blackwell GPU architecture, specifically targeting SM100 (Compute Capability 10.x) with '100a' architecture-specific features (e.g., for CUTLASS). Key changes: - Updated custom_ops/setup_ops.py to generate appropriate gencode flags (arch=compute_100a,code=sm_100a) when '100' is specified in FD_BUILDING_ARCS. Requires CUDA 12.9+. - Updated custom_ops/gpu_ops/cutlass_extensions/gemm_configs.h: - Added CutlassTileConfigSM100 enum (with placeholder tile shapes). - Added BLACKWELL to CandidateConfigTypeParam. - Updated CutlassGemmConfig struct with is_sm100 flag, tile_config_sm100, and new constructor for SM100. - Modified toString() and fromString() for SM100 support. - Updated custom_ops/gpu_ops/cutlass_kernels/cutlass_heuristic.cu: - Added get_candidate_tiles_sm100() (with placeholder tiles). - Added placeholder mcast support functions for SM100. - Updated get_candidate_configs() to include SM100 paths using the BLACKWELL flag and new SM100 config types. - Updated build.sh with comments to guide users on specifying '100' for Blackwell in FD_BUILDING_ARCS. Further work: - Optimal CUTLASS tile configurations for SM100 need to be researched and updated in cutlass_heuristic.cu. - Kernel auto-generation scripts in custom_ops/utils/ may need SM100-specific versions if Blackwell's hardware features for FP8/TMA differ significantly from SM90. - Compatibility of third-party libraries (CUTLASS v3.8.0, DeepGEMM) with Blackwell should be fully verified. * Feat: Implement detailed Blackwell (SM100) CUTLASS heuristics This change integrates specific, expert-provided CUTLASS heuristic configurations for the NVIDIA Blackwell (SM100) GPU architecture, replacing previous placeholders. This includes: - Updated `custom_ops/gpu_ops/cutlass_extensions/gemm_configs.h`: - Populated `CutlassTileConfigSM100` enum with specific tile shapes (e.g., CtaShape64x64x128B, CtaShape128x128x128B) suitable for SM100. - Added `FP4_ONLY` to `CandidateConfigTypeParam` for new FP4 paths. - Updated `custom_ops/gpu_ops/cutlass_kernels/cutlass_heuristic.cu`: - Implemented `get_candidate_tiles_sm100` with detailed logic for selecting tile configurations based on GROUPED_GEMM and FP4_ONLY flags, using the new SM100 tile enums. - Implemented `supports_mcast_along_m_sm100` and `supports_mcast_along_n_sm100` with specific tile checks for Blackwell. - Updated the `sm == 100` (Blackwell) block in `get_candidate_configs` to use these new helper functions and accurately populate candidate kernel configurations for various cluster shapes. - `custom_ops/setup_ops.py` remains configured to compile for `arch=compute_100a,code=sm_100a` with CUDA 12.9+ for these features. This aligns the codebase with heuristic configurations similar to those in upstream TensorRT-LLM / CUTLASS for Blackwell, enabling more performant kernel selection on this new architecture. --------- Co-authored-by: google-labs-jules[bot] <161369871+google-labs-jules[bot]@users.noreply.github.com> Co-authored-by: Jiang-Jia-Jun <163579578+Jiang-Jia-Jun@users.noreply.github.com>
526 lines
21 KiB
Plaintext
526 lines
21 KiB
Plaintext
/*
|
|
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <cuda_bf16.h>
|
|
|
|
#ifndef _WIN32
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
|
|
#endif // #ifndef _WIN32
|
|
|
|
#include "cutlass/gemm/gemm.h"
|
|
#include "cutlass/numeric_types.h"
|
|
|
|
#ifndef _WIN32
|
|
#pragma GCC diagnostic pop
|
|
#endif // #ifndef _WIN32
|
|
|
|
#include <cuda_runtime_api.h>
|
|
#include <set>
|
|
#include <vector>
|
|
#include "cutlass_kernels/cutlass_heuristic.h"
|
|
|
|
using namespace cutlass_extensions;
|
|
|
|
namespace kernels
|
|
{
|
|
namespace cutlass_kernels
|
|
{
|
|
|
|
struct TileShape
|
|
{
|
|
int m;
|
|
int n;
|
|
};
|
|
|
|
TileShape get_cta_shape_for_config(CutlassTileConfig tile_config)
|
|
{
|
|
switch (tile_config)
|
|
{
|
|
case CutlassTileConfig::CtaShape16x128x64_WarpShape16x32x64: return TileShape{16, 128};
|
|
case CutlassTileConfig::CtaShape16x256x64_WarpShape16x64x64: return TileShape{16, 256};
|
|
case CutlassTileConfig::CtaShape32x128x64_WarpShape32x32x64: return TileShape{32, 128};
|
|
case CutlassTileConfig::CtaShape64x64x128_WarpShape32x64x64: return TileShape{64, 64};
|
|
case CutlassTileConfig::CtaShape64x128x64_WarpShape32x64x64:
|
|
case CutlassTileConfig::CtaShape64x128x64_WarpShape64x32x64: return TileShape{64, 128};
|
|
case CutlassTileConfig::CtaShape128x64x64_WarpShape64x32x64: return TileShape{128, 64};
|
|
case CutlassTileConfig::CtaShape128x128x8_WarpShape64x64x8:
|
|
case CutlassTileConfig::CtaShape128x128x64_WarpShape64x32x64:
|
|
case CutlassTileConfig::CtaShape128x128x64_WarpShape64x64x64:
|
|
case CutlassTileConfig::CtaShape128x128x64_WarpShape128x32x64: return TileShape{128, 128};
|
|
case CutlassTileConfig::CtaShape128x256x64_WarpShape64x64x64: return TileShape{128, 256};
|
|
case CutlassTileConfig::CtaShape256x128x64_WarpShape64x64x64: return TileShape{256, 128};
|
|
case CutlassTileConfig::CtaShape16x256x128_WarpShape16x64x128: return TileShape{16, 256};
|
|
default: throw("[get_grid_shape_for_config] Invalid config");
|
|
}
|
|
}
|
|
|
|
bool is_valid_split_k_factor(int64_t const m, int64_t const n, int64_t const k, TileShape const tile_shape,
|
|
int const split_k_factor, size_t const workspace_bytes, bool const is_weight_only)
|
|
{
|
|
|
|
// All tile sizes have a k_tile of 64.
|
|
static constexpr int k_tile = 128;
|
|
|
|
// For weight-only quant, we need k and k_elements_per_split to be a multiple of cta_k
|
|
if (is_weight_only)
|
|
{
|
|
if ((k % k_tile) != 0)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if ((k % split_k_factor) != 0)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
int const k_elements_per_split = k / split_k_factor;
|
|
if ((k_elements_per_split % k_tile) != 0)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check that the workspace has sufficient space for this split-k factor
|
|
int const ctas_in_m_dim = (m + tile_shape.m - 1) / tile_shape.m;
|
|
int const ctas_in_n_dim = (n + tile_shape.n - 1) / tile_shape.n;
|
|
int const required_ws_bytes = split_k_factor == 1 ? 0 : sizeof(int) * ctas_in_m_dim * ctas_in_n_dim;
|
|
|
|
if (required_ws_bytes > workspace_bytes)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
std::vector<CutlassTileConfig> get_candidate_tiles(
|
|
int const sm, CutlassGemmConfig::CandidateConfigTypeParam const config_type_param)
|
|
{
|
|
enum class CutlassGemmType : char
|
|
{
|
|
Default,
|
|
WeightOnly,
|
|
Simt,
|
|
Int8,
|
|
Fp8
|
|
};
|
|
|
|
CutlassGemmType gemm_type = CutlassGemmType::Default;
|
|
if (config_type_param & CutlassGemmConfig::SIMT_ONLY)
|
|
{
|
|
gemm_type = CutlassGemmType::Simt;
|
|
}
|
|
else if (config_type_param & CutlassGemmConfig::WEIGHT_ONLY)
|
|
{
|
|
gemm_type = CutlassGemmType::WeightOnly;
|
|
}
|
|
else if (config_type_param & CutlassGemmConfig::INT8_ONLY)
|
|
{
|
|
gemm_type = CutlassGemmType::Int8;
|
|
}
|
|
else if (config_type_param & CutlassGemmConfig::FP8_ONLY)
|
|
{
|
|
gemm_type = CutlassGemmType::Fp8;
|
|
}
|
|
|
|
std::vector<CutlassTileConfig> base_configs{
|
|
CutlassTileConfig::CtaShape32x128x64_WarpShape32x32x64, CutlassTileConfig::CtaShape64x128x64_WarpShape32x64x64};
|
|
if (sm >= 75)
|
|
{
|
|
base_configs.push_back(CutlassTileConfig::CtaShape128x128x64_WarpShape64x32x64);
|
|
}
|
|
|
|
switch (gemm_type)
|
|
{
|
|
case CutlassGemmType::Simt: return {CutlassTileConfig::CtaShape128x128x8_WarpShape64x64x8};
|
|
case CutlassGemmType::WeightOnly:
|
|
if (sm >= 75)
|
|
{
|
|
return {CutlassTileConfig::CtaShape16x128x64_WarpShape16x32x64,
|
|
CutlassTileConfig::CtaShape16x256x64_WarpShape16x64x64,
|
|
CutlassTileConfig::CtaShape32x128x64_WarpShape32x32x64,
|
|
CutlassTileConfig::CtaShape64x128x64_WarpShape64x32x64,
|
|
CutlassTileConfig::CtaShape128x128x64_WarpShape128x32x64};
|
|
}
|
|
else
|
|
{
|
|
return {CutlassTileConfig::CtaShape32x128x64_WarpShape32x32x64,
|
|
CutlassTileConfig::CtaShape64x128x64_WarpShape64x32x64};
|
|
}
|
|
case CutlassGemmType::Int8:
|
|
return {CutlassTileConfig::CtaShape32x128x64_WarpShape32x32x64,
|
|
CutlassTileConfig::CtaShape64x128x64_WarpShape64x32x64,
|
|
CutlassTileConfig::CtaShape128x64x64_WarpShape64x32x64,
|
|
CutlassTileConfig::CtaShape64x64x128_WarpShape32x64x64,
|
|
CutlassTileConfig::CtaShape128x256x64_WarpShape64x64x64,
|
|
CutlassTileConfig::CtaShape256x128x64_WarpShape64x64x64};
|
|
case CutlassGemmType::Fp8:
|
|
if (config_type_param & CutlassGemmConfig::GROUPED_GEMM)
|
|
{
|
|
if (sm == 89)
|
|
{
|
|
return {CutlassTileConfig::CtaShape16x256x128_WarpShape16x64x128,
|
|
CutlassTileConfig::CtaShape32x128x64_WarpShape32x32x64,
|
|
CutlassTileConfig::CtaShape64x128x64_WarpShape64x32x64,
|
|
CutlassTileConfig::CtaShape64x64x128_WarpShape32x64x64,
|
|
CutlassTileConfig::CtaShape128x64x64_WarpShape64x32x64,
|
|
CutlassTileConfig::CtaShape128x256x64_WarpShape64x64x64,
|
|
CutlassTileConfig::CtaShape256x128x64_WarpShape64x64x64};
|
|
}
|
|
else
|
|
{
|
|
// no valid ampere style fp8 configs for sm90
|
|
return {};
|
|
}
|
|
}
|
|
default: return base_configs;
|
|
}
|
|
}
|
|
|
|
std::vector<CutlassTileConfigSM90> get_candidate_tiles_sm90(
|
|
int const sm, CutlassGemmConfig::CandidateConfigTypeParam const config)
|
|
{
|
|
#ifdef FAST_BUILD
|
|
// Fast build disables all configs except this one for SM90
|
|
return {CutlassTileConfigSM90::CtaShape128x128x128B};
|
|
#else
|
|
if (config & CutlassGemmConfig::GROUPED_GEMM)
|
|
{
|
|
return {CutlassTileConfigSM90::CtaShape128x16x128B, CutlassTileConfigSM90::CtaShape128x32x128B,
|
|
CutlassTileConfigSM90::CtaShape128x64x128B, CutlassTileConfigSM90::CtaShape128x128x128B,
|
|
CutlassTileConfigSM90::CtaShape128x256x128B, CutlassTileConfigSM90::CtaShape256x128x128B};
|
|
}
|
|
else
|
|
{
|
|
return {CutlassTileConfigSM90::CtaShape64x16x128B, CutlassTileConfigSM90::CtaShape64x32x128B,
|
|
CutlassTileConfigSM90::CtaShape64x64x128B, CutlassTileConfigSM90::CtaShape64x128x128B,
|
|
CutlassTileConfigSM90::CtaShape64x256x128B, CutlassTileConfigSM90::CtaShape128x16x128B,
|
|
CutlassTileConfigSM90::CtaShape128x32x128B, CutlassTileConfigSM90::CtaShape128x64x128B,
|
|
CutlassTileConfigSM90::CtaShape128x128x128B, CutlassTileConfigSM90::CtaShape128x256x128B};
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// We only compile CUTLASS kernels with multi-cast along M if the M tile is >= 128. This is purely to improve
|
|
// compilation speed.
|
|
bool supports_mcast_along_m(CutlassTileConfigSM90 const tile)
|
|
{
|
|
#ifdef FAST_BUILD
|
|
return false;
|
|
#else
|
|
std::set<CutlassTileConfigSM90> valid_tiles{CutlassTileConfigSM90::CtaShape128x16x128B,
|
|
CutlassTileConfigSM90::CtaShape128x32x128B, CutlassTileConfigSM90::CtaShape128x64x128B,
|
|
CutlassTileConfigSM90::CtaShape128x128x128B, CutlassTileConfigSM90::CtaShape128x256x128B,
|
|
CutlassTileConfigSM90::CtaShape256x128x128B};
|
|
return valid_tiles.count(tile) == 1;
|
|
#endif
|
|
}
|
|
|
|
// We only compile CUTLASS kernels with multi-cast along N if the N tile is >= 128. This is purely to improve
|
|
// compilation speed.
|
|
bool supports_mcast_along_n(CutlassTileConfigSM90 const tile)
|
|
{
|
|
#ifdef FAST_BUILD
|
|
return false;
|
|
#else
|
|
std::set<CutlassTileConfigSM90> valid_tiles{CutlassTileConfigSM90::CtaShape64x128x128B,
|
|
CutlassTileConfigSM90::CtaShape64x256x128B, CutlassTileConfigSM90::CtaShape128x128x128B,
|
|
CutlassTileConfigSM90::CtaShape128x256x128B, CutlassTileConfigSM90::CtaShape256x128x128B};
|
|
return valid_tiles.count(tile) == 1;
|
|
#endif
|
|
}
|
|
|
|
// SM100 (Blackwell) candidate tile configurations
|
|
std::vector<CutlassTileConfigSM100> get_candidate_tiles_sm100(
|
|
int /*sm*/, CutlassGemmConfig::CandidateConfigTypeParam const config)
|
|
{
|
|
#ifdef FAST_BUILD
|
|
return {CutlassTileConfigSM100::CtaShape128x128x128B};
|
|
#else
|
|
/* Grouped-GEMM path first (Blackwell uses 1-SM and 2-SM “cluster” kernels) */
|
|
if (config & CutlassGemmConfig::GROUPED_GEMM)
|
|
{
|
|
if (config & CutlassGemmConfig::FP4_ONLY) // nvfp4 / mx_fp4
|
|
{
|
|
return {
|
|
/* 1 SM (M=128) */
|
|
CutlassTileConfigSM100::CtaShape128x128x128B,
|
|
CutlassTileConfigSM100::CtaShape128x256x128B,
|
|
/* 2 SM (M=256) */
|
|
CutlassTileConfigSM100::CtaShape256x128x128B,
|
|
CutlassTileConfigSM100::CtaShape256x256x128B,
|
|
/* slim tiles for very tall matrices */
|
|
CutlassTileConfigSM100::CtaShape128x64x128B,
|
|
CutlassTileConfigSM100::CtaShape256x64x128B};
|
|
}
|
|
|
|
/* Fp8 / Fp16 grouped-GEMM */
|
|
return {
|
|
CutlassTileConfigSM100::CtaShape128x128x128B,
|
|
CutlassTileConfigSM100::CtaShape128x256x128B,
|
|
CutlassTileConfigSM100::CtaShape256x128x128B,
|
|
CutlassTileConfigSM100::CtaShape256x256x128B};
|
|
}
|
|
|
|
/* Non-grouped path (plain GEMM or weight-only) */
|
|
return {
|
|
/* 1 SM tiles */
|
|
CutlassTileConfigSM100::CtaShape64x64x128B,
|
|
CutlassTileConfigSM100::CtaShape64x128x128B,
|
|
CutlassTileConfigSM100::CtaShape64x256x128B,
|
|
CutlassTileConfigSM100::CtaShape128x64x128B,
|
|
CutlassTileConfigSM100::CtaShape128x128x128B,
|
|
CutlassTileConfigSM100::CtaShape128x256x128B,
|
|
/* 2 SM tiles */
|
|
CutlassTileConfigSM100::CtaShape256x64x128B,
|
|
CutlassTileConfigSM100::CtaShape256x128x128B,
|
|
CutlassTileConfigSM100::CtaShape256x256x128B};
|
|
#endif
|
|
}
|
|
|
|
// M-multicast support for SM100.
|
|
bool supports_mcast_along_m_sm100(CutlassTileConfigSM100 tile)
|
|
{
|
|
#ifdef FAST_BUILD
|
|
return false;
|
|
#else
|
|
std::set<CutlassTileConfigSM100> m_tiles{
|
|
CutlassTileConfigSM100::CtaShape128x64x128B,
|
|
CutlassTileConfigSM100::CtaShape128x128x128B,
|
|
CutlassTileConfigSM100::CtaShape128x256x128B,
|
|
CutlassTileConfigSM100::CtaShape256x64x128B,
|
|
CutlassTileConfigSM100::CtaShape256x128x128B,
|
|
CutlassTileConfigSM100::CtaShape256x256x128B};
|
|
return m_tiles.count(tile) == 1;
|
|
#endif
|
|
}
|
|
|
|
// N-multicast support for SM100.
|
|
bool supports_mcast_along_n_sm100(CutlassTileConfigSM100 tile)
|
|
{
|
|
#ifdef FAST_BUILD
|
|
return false;
|
|
#else
|
|
std::set<CutlassTileConfigSM100> n_tiles{
|
|
CutlassTileConfigSM100::CtaShape64x128x128B,
|
|
CutlassTileConfigSM100::CtaShape64x256x128B,
|
|
CutlassTileConfigSM100::CtaShape128x128x128B,
|
|
CutlassTileConfigSM100::CtaShape128x256x128B,
|
|
CutlassTileConfigSM100::CtaShape256x128x128B};
|
|
return n_tiles.count(tile) == 1;
|
|
#endif
|
|
}
|
|
|
|
|
|
std::vector<CutlassGemmConfig> get_candidate_configs(
|
|
int sm, int const max_split_k, CutlassGemmConfig::CandidateConfigTypeParam const config_type_param)
|
|
{
|
|
if (sm == 90 && (config_type_param & CutlassGemmConfig::HOPPER))
|
|
{
|
|
std::vector<CutlassTileConfigSM90> tiles = get_candidate_tiles_sm90(sm, config_type_param);
|
|
|
|
std::vector<CutlassGemmConfig> candidate_configs;
|
|
for (auto const& tile_config : tiles)
|
|
{
|
|
CutlassGemmConfig config(
|
|
tile_config, MainloopScheduleType::AUTO, EpilogueScheduleType::AUTO, ClusterShape::ClusterShape_1x1x1);
|
|
candidate_configs.push_back(config);
|
|
|
|
bool const has_m_mcast = supports_mcast_along_m(tile_config);
|
|
bool const has_n_mcast = supports_mcast_along_n(tile_config);
|
|
if (has_m_mcast)
|
|
{
|
|
CutlassGemmConfig config(tile_config, MainloopScheduleType::AUTO, EpilogueScheduleType::AUTO,
|
|
ClusterShape::ClusterShape_2x1x1);
|
|
candidate_configs.push_back(config);
|
|
}
|
|
|
|
if (has_n_mcast)
|
|
{
|
|
CutlassGemmConfig config(tile_config, MainloopScheduleType::AUTO, EpilogueScheduleType::AUTO,
|
|
ClusterShape::ClusterShape_1x2x1);
|
|
candidate_configs.push_back(config);
|
|
}
|
|
|
|
if (has_m_mcast && has_n_mcast)
|
|
{
|
|
CutlassGemmConfig config(tile_config, MainloopScheduleType::AUTO, EpilogueScheduleType::AUTO,
|
|
ClusterShape::ClusterShape_2x2x1);
|
|
candidate_configs.push_back(config);
|
|
}
|
|
}
|
|
return candidate_configs;
|
|
}
|
|
else if (sm == 100 && (config_type_param & CutlassGemmConfig::BLACKWELL)) // Assuming SM100 for Blackwell
|
|
{
|
|
std::vector<CutlassTileConfigSM100> tiles = get_candidate_tiles_sm100(sm, config_type_param);
|
|
std::vector<CutlassGemmConfig> candidate_configs;
|
|
|
|
for (auto const& tile_config_sm100 : tiles)
|
|
{
|
|
// SM100 uses MainloopScheduleType::AUTO, EpilogueScheduleType::AUTO similar to SM90.
|
|
// Cluster shapes are also handled similarly.
|
|
CutlassGemmConfig config(
|
|
tile_config_sm100, MainloopScheduleType::AUTO, EpilogueScheduleType::AUTO, ClusterShape::ClusterShape_1x1x1);
|
|
candidate_configs.push_back(config);
|
|
|
|
bool const has_m_mcast = supports_mcast_along_m_sm100(tile_config_sm100);
|
|
bool const has_n_mcast = supports_mcast_along_n_sm100(tile_config_sm100);
|
|
|
|
if (has_m_mcast)
|
|
{
|
|
CutlassGemmConfig mcast_m_config(tile_config_sm100, MainloopScheduleType::AUTO, EpilogueScheduleType::AUTO,
|
|
ClusterShape::ClusterShape_2x1x1);
|
|
candidate_configs.push_back(mcast_m_config);
|
|
}
|
|
|
|
if (has_n_mcast)
|
|
{
|
|
CutlassGemmConfig mcast_n_config(tile_config_sm100, MainloopScheduleType::AUTO, EpilogueScheduleType::AUTO,
|
|
ClusterShape::ClusterShape_1x2x1);
|
|
candidate_configs.push_back(mcast_n_config);
|
|
}
|
|
|
|
if (has_m_mcast && has_n_mcast)
|
|
{
|
|
CutlassGemmConfig mcast_mn_config(tile_config_sm100, MainloopScheduleType::AUTO, EpilogueScheduleType::AUTO,
|
|
ClusterShape::ClusterShape_2x2x1);
|
|
candidate_configs.push_back(mcast_mn_config);
|
|
}
|
|
}
|
|
return candidate_configs;
|
|
}
|
|
|
|
// Fallback to older architecture configurations
|
|
std::vector<CutlassTileConfig> tiles = get_candidate_tiles(sm, config_type_param);
|
|
std::vector<CutlassGemmConfig> candidate_configs; //Already declared above for SM90 path, ensure scope is correct or redeclare if necessary.
|
|
// It's fine here as it's within an else if / else block.
|
|
bool const int8_configs_only = config_type_param & CutlassGemmConfig::INT8_ONLY;
|
|
int const min_stages = int8_configs_only ? 3 : 2;
|
|
int const max_stages = int8_configs_only ? 6 : (sm >= 80 ? 4 : 2);
|
|
for (auto const& tile_config : tiles)
|
|
{
|
|
for (int stages = min_stages; stages <= max_stages; ++stages)
|
|
{
|
|
CutlassGemmConfig config(tile_config, SplitKStyle::NO_SPLIT_K, 1, stages);
|
|
candidate_configs.push_back(config);
|
|
if (sm >= 75)
|
|
{
|
|
for (int split_k_factor = 2; split_k_factor <= max_split_k; ++split_k_factor)
|
|
{
|
|
auto config = CutlassGemmConfig{tile_config, SplitKStyle::SPLIT_K_SERIAL, split_k_factor, stages};
|
|
candidate_configs.push_back(config);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return candidate_configs;
|
|
}
|
|
|
|
CutlassGemmConfig estimate_best_config_from_occupancies(std::vector<CutlassGemmConfig> const& candidate_configs,
|
|
std::vector<int> const& occupancies, int64_t const m, int64_t const n, int64_t const k, int64_t const num_experts,
|
|
int const split_k_limit, size_t const workspace_bytes, int const multi_processor_count, int const is_weight_only)
|
|
{
|
|
|
|
if (occupancies.size() != candidate_configs.size())
|
|
{
|
|
throw(
|
|
"[estimate_best_config_from_occupancies] occpancies and "
|
|
"candidate configs vectors must have equal length.");
|
|
}
|
|
|
|
CutlassGemmConfig best_config;
|
|
// Score will be [0, 1]. The objective is to minimize this score.
|
|
// It represents the fraction of SM resources unused in the last wave.
|
|
float config_score = 1.0f;
|
|
int config_waves = INT_MAX;
|
|
int current_m_tile = 0;
|
|
|
|
int const max_split_k = n >= multi_processor_count * 256 ? 1 : split_k_limit;
|
|
for (int ii = 0; ii < candidate_configs.size(); ++ii)
|
|
{
|
|
CutlassGemmConfig candidate_config = candidate_configs[ii];
|
|
TileShape tile_shape = get_cta_shape_for_config(candidate_config.tile_config);
|
|
int occupancy = occupancies[ii];
|
|
|
|
if (occupancy == 0)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
// Keep small tile sizes when possible.
|
|
if (best_config.tile_config != CutlassTileConfig::ChooseWithHeuristic && m < current_m_tile
|
|
&& current_m_tile < tile_shape.m)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
int const ctas_in_m_dim = (m + tile_shape.m - 1) / tile_shape.m;
|
|
int const ctas_in_n_dim = (n + tile_shape.n - 1) / tile_shape.n;
|
|
|
|
for (int split_k_factor = 1; split_k_factor <= max_split_k; ++split_k_factor)
|
|
{
|
|
if (is_valid_split_k_factor(m, n, k, tile_shape, split_k_factor, workspace_bytes, is_weight_only))
|
|
{
|
|
int const ctas_per_wave = occupancy * multi_processor_count;
|
|
int const ctas_for_problem = ctas_in_m_dim * ctas_in_n_dim * split_k_factor;
|
|
|
|
int const num_waves_total = (ctas_for_problem + ctas_per_wave - 1) / ctas_per_wave;
|
|
float const num_waves_fractional = ctas_for_problem / float(ctas_per_wave);
|
|
float const current_score = float(num_waves_total) - num_waves_fractional;
|
|
|
|
float const score_slack = 0.1f;
|
|
if (current_score < config_score
|
|
|| ((config_waves > num_waves_total) && (current_score < config_score + score_slack)))
|
|
{
|
|
config_score = current_score;
|
|
config_waves = num_waves_total;
|
|
SplitKStyle split_style
|
|
= split_k_factor > 1 ? SplitKStyle::SPLIT_K_SERIAL : SplitKStyle::NO_SPLIT_K;
|
|
best_config = CutlassGemmConfig(
|
|
candidate_config.tile_config, split_style, split_k_factor, candidate_config.stages);
|
|
current_m_tile = tile_shape.m;
|
|
}
|
|
else if (current_score == config_score
|
|
&& (best_config.stages < candidate_config.stages || split_k_factor < best_config.split_k_factor
|
|
|| current_m_tile < tile_shape.m))
|
|
{
|
|
// Prefer deeper pipeline or smaller split-k
|
|
SplitKStyle split_style
|
|
= split_k_factor > 1 ? SplitKStyle::SPLIT_K_SERIAL : SplitKStyle::NO_SPLIT_K;
|
|
best_config = CutlassGemmConfig(
|
|
candidate_config.tile_config, split_style, split_k_factor, candidate_config.stages);
|
|
current_m_tile = tile_shape.m;
|
|
config_waves = num_waves_total;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (best_config.tile_config == CutlassTileConfig::ChooseWithHeuristic)
|
|
{
|
|
throw("Heurisitc failed to find a valid config.");
|
|
}
|
|
|
|
return best_config;
|
|
}
|
|
|
|
} // namespace cutlass_kernels
|
|
} // namespace kernels
|