mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* [FlyCV] Bump up FlyCV -> official release 1.0.0 * XPU to KunlunXin * update * update model link * update doc * update device * update code * useless code Co-authored-by: DefTruth <qiustudent_r@163.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
65 lines
1.7 KiB
Python
Executable File
65 lines
1.7 KiB
Python
Executable File
import fastdeploy as fd
|
||
import cv2
|
||
import os
|
||
|
||
|
||
def parse_arguments():
|
||
import argparse
|
||
import ast
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument(
|
||
"--model", required=True, help="Path of PaddleClas model.")
|
||
parser.add_argument(
|
||
"--image", type=str, required=True, help="Path of test image file.")
|
||
parser.add_argument(
|
||
"--topk", type=int, default=1, help="Return topk results.")
|
||
parser.add_argument(
|
||
"--device",
|
||
type=str,
|
||
default='cpu',
|
||
help="Type of inference device, support 'cpu' or 'gpu' or 'ipu' or 'kunlunxin' or 'ascend' ."
|
||
)
|
||
parser.add_argument(
|
||
"--use_trt",
|
||
type=ast.literal_eval,
|
||
default=False,
|
||
help="Wether to use tensorrt.")
|
||
return parser.parse_args()
|
||
|
||
|
||
def build_option(args):
|
||
option = fd.RuntimeOption()
|
||
|
||
if args.device.lower() == "gpu":
|
||
option.use_gpu()
|
||
|
||
if args.device.lower() == "ipu":
|
||
option.use_ipu()
|
||
|
||
if args.device.lower() == "kunlunxin":
|
||
option.use_kunlunxin()
|
||
|
||
if args.device.lower() == "ascend":
|
||
option.use_ascend()
|
||
|
||
if args.use_trt:
|
||
option.use_trt_backend()
|
||
return option
|
||
|
||
|
||
args = parse_arguments()
|
||
|
||
# 配置runtime,加载模型
|
||
runtime_option = build_option(args)
|
||
|
||
model_file = os.path.join(args.model, "inference.pdmodel")
|
||
params_file = os.path.join(args.model, "inference.pdiparams")
|
||
config_file = os.path.join(args.model, "inference_cls.yaml")
|
||
model = fd.vision.classification.PaddleClasModel(
|
||
model_file, params_file, config_file, runtime_option=runtime_option)
|
||
|
||
# 预测图片分类结果
|
||
im = cv2.imread(args.image)
|
||
result = model.predict(im, args.topk)
|
||
print(result)
|