Files
FastDeploy/examples/multimodal/stable_diffusion/cpp/main.cc
2022-12-05 07:48:51 +00:00

207 lines
8.4 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dpm_solver_multistep_scheduler.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/common/processors/mat.h"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "pipeline_stable_diffusion_inpaint.h"
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include <unordered_map>
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif
template <typename T> std::string Str(const T* value, int size) {
std::ostringstream oss;
oss << "[ " << value[0];
for (int i = 1; i < size; ++i) {
oss << " ," << value[i];
}
oss << " ]";
return oss.str();
}
std::unique_ptr<fastdeploy::Runtime> CreateRuntime(
const std::string& model_file, const std::string& params_file,
bool use_trt_backend = false, bool use_fp16 = false,
const std::unordered_map<std::string, std::vector<std::vector<int>>>&
dynamic_shapes = {},
const std::vector<std::string>& disable_paddle_trt_ops = {}) {
fastdeploy::RuntimeOption runtime_option;
runtime_option.SetModelPath(model_file, params_file,
fastdeploy::ModelFormat::PADDLE);
runtime_option.UseGpu();
if (!use_trt_backend) {
runtime_option.UsePaddleBackend();
} else {
runtime_option.UseTrtBackend();
runtime_option.EnablePaddleToTrt();
for (auto it = dynamic_shapes.begin(); it != dynamic_shapes.end(); ++it) {
if (it->second.size() != 3) {
std::cerr << "The size of dynamic_shapes of input `" << it->first
<< "` should be 3, but receive " << it->second.size()
<< std::endl;
continue;
}
std::vector<int> min_shape = (it->second)[0];
std::vector<int> opt_shape = (it->second)[1];
std::vector<int> max_shape = (it->second)[2];
runtime_option.SetTrtInputShape(it->first, min_shape, opt_shape,
max_shape);
}
runtime_option.SetTrtCacheFile("");
runtime_option.EnablePaddleTrtCollectShape();
runtime_option.DisablePaddleTrtOPs(disable_paddle_trt_ops);
if (use_fp16) {
runtime_option.EnableTrtFP16();
}
}
std::unique_ptr<fastdeploy::Runtime> runtime =
std::unique_ptr<fastdeploy::Runtime>(new fastdeploy::Runtime());
if (!runtime->Init(runtime_option)) {
std::cerr << "--- Init FastDeploy Runitme Failed! "
<< "\n--- Model: " << model_file << std::endl;
return nullptr;
} else {
std::cout << "--- Init FastDeploy Runitme Done! "
<< "\n--- Model: " << model_file << std::endl;
}
return runtime;
}
int main() {
// 0. Init all configs
std::string model_dir = "sd15_inpaint";
int max_length = 77;
bool use_trt_backend = true;
bool use_fp16 = true;
int batch_size = 1;
// 1. Init scheduler
std::unique_ptr<fastdeploy::Scheduler> dpm(
new fastdeploy::DPMSolverMultistepScheduler(
/* num_train_timesteps */ 1000,
/* beta_start = */ 0.00085,
/* beta_end = */ 0.012,
/* beta_schedule = */ "scaled_linear",
/* trained_betas = */ {},
/* solver_order = */ 2,
/* predict_epsilon = */ true,
/* thresholding = */ false,
/* dynamic_thresholding_ratio = */ 0.995,
/* sample_max_value = */ 1.0,
/* algorithm_type = */ "dpmsolver++",
/* solver_type = */ "midpoint",
/* lower_order_final = */ true));
// 2. Init text encoder runtime
std::unordered_map<std::string, std::vector<std::vector<int>>>
text_dynamic_shape = {{"input_ids",
{/* min_shape */ {1, max_length},
/* opt_shape */ {batch_size, max_length},
/* max_shape */ {2 * batch_size, max_length}}}};
std::string text_model_dir = model_dir + sep + "text_encoder";
std::string text_model_file = text_model_dir + sep + "inference.pdmodel";
std::string text_params_file = text_model_dir + sep + "inference.pdiparams";
std::unique_ptr<fastdeploy::Runtime> text_encoder_runtime =
CreateRuntime(text_model_file, text_params_file, use_trt_backend,
use_fp16, text_dynamic_shape);
// 3. Init vae encoder runtime
std::unordered_map<std::string, std::vector<std::vector<int>>>
vae_encoder_dynamic_shape = {
{"sample",
{/* min_shape */ {1, 3, 512, 512},
/* opt_shape */ {2 * batch_size, 3, 512, 512},
/* max_shape */ {2 * batch_size, 3, 512, 512}}}};
std::string vae_encoder_model_dir = model_dir + sep + "vae_encoder";
std::string vae_encoder_model_file =
vae_encoder_model_dir + sep + "inference.pdmodel";
std::string vae_encoder_params_file =
vae_encoder_model_dir + sep + "inference.pdiparams";
std::unique_ptr<fastdeploy::Runtime> vae_encoder_runtime =
CreateRuntime(vae_encoder_model_file, vae_encoder_params_file,
use_trt_backend, use_fp16, vae_encoder_dynamic_shape);
// 4. Init vae decoder runtime
std::unordered_map<std::string, std::vector<std::vector<int>>>
vae_decoder_dynamic_shape = {
{"latent_sample",
{/* min_shape */ {1, 4, 64, 64},
/* opt_shape */ {2 * batch_size, 4, 64, 64},
/* max_shape */ {2 * batch_size, 4, 64, 64}}}};
std::string vae_decoder_model_dir = model_dir + sep + "vae_decoder";
std::string vae_decoder_model_file =
vae_decoder_model_dir + sep + "inference.pdmodel";
std::string vae_decoder_params_file =
vae_decoder_model_dir + sep + "inference.pdiparams";
std::unique_ptr<fastdeploy::Runtime> vae_decoder_runtime =
CreateRuntime(vae_decoder_model_file, vae_decoder_params_file,
use_trt_backend, use_fp16, vae_decoder_dynamic_shape);
// 5. Init unet runtime
constexpr int unet_inpaint_channels = 9;
std::unordered_map<std::string, std::vector<std::vector<int>>>
unet_dynamic_shape = {
{"sample",
{/* min_shape */ {1, unet_inpaint_channels, 64, 64},
/* opt_shape */ {2 * batch_size, unet_inpaint_channels, 64, 64},
/* max_shape */ {2 * batch_size, unet_inpaint_channels, 64, 64}}},
{"timesteps", {{1}, {1}, {1}}},
{"encoder_hidden_states",
{{1, max_length, 768},
{2 * batch_size, max_length, 768},
{2 * batch_size, max_length, 768}}}};
std::vector<std::string> unet_disable_paddle_trt_ops = {"sin", "cos"};
std::string unet_model_dir = model_dir + sep + "unet";
std::string unet_model_file = unet_model_dir + sep + "inference.pdmodel";
std::string unet_params_file = unet_model_dir + sep + "inference.pdiparams";
std::unique_ptr<fastdeploy::Runtime> unet_runtime =
CreateRuntime(unet_model_file, unet_params_file, use_trt_backend,
use_fp16, unet_dynamic_shape, unet_disable_paddle_trt_ops);
// 6. Init fast tokenizer
paddlenlp::fast_tokenizer::tokenizers_impl::ClipFastTokenizer tokenizer(
"clip/vocab.json", "clip/merges.txt", /* max_length = */ max_length);
fastdeploy::StableDiffusionInpaintPipeline pipe(
std::move(vae_encoder_runtime), std::move(vae_decoder_runtime),
std::move(text_encoder_runtime), std::move(unet_runtime),
/* scheduler = */ std::move(dpm), tokenizer);
// 7. Read images
auto image = cv::imread("overture-creations.png");
auto mask_image = cv::imread("overture-creations-mask.png");
// 8. Predict
std::vector<std::string> prompts = {
"Face of a yellow cat, high resolution, sitting on a park bench"};
std::vector<fastdeploy::FDTensor> outputs;
fastdeploy::TimeCounter tc;
tc.Start();
pipe.Predict(prompts, image, mask_image, &outputs, /* height = */ 512,
/* width = */ 512, /* num_inference_steps = */ 50);
tc.End();
tc.PrintInfo();
fastdeploy::vision::FDMat mat = fastdeploy::vision::FDMat::Create(outputs[0]);
cv::imwrite("cat_on_bench_new.png", *mat.GetOpenCVMat());
return 0;
}