mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			276 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			276 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| namespace Eigen {
 | |
| 
 | |
| /** \eigenManualPage TopicLinearAlgebraDecompositions Catalogue of dense decompositions
 | |
| 
 | |
| This page presents a catalogue of the dense matrix decompositions offered by Eigen.
 | |
| For an introduction on linear solvers and decompositions, check this \link TutorialLinearAlgebra page \endlink.
 | |
| To get an overview of the true relative speed of the different decompositions, check this \link DenseDecompositionBenchmark benchmark \endlink.
 | |
| 
 | |
| \section TopicLinAlgBigTable Catalogue of decompositions offered by Eigen
 | |
| 
 | |
| <table class="manual-vl">
 | |
|     <tr>
 | |
|         <th class="meta"></th>
 | |
|         <th class="meta" colspan="5">Generic information, not Eigen-specific</th>
 | |
|         <th class="meta" colspan="3">Eigen-specific</th>
 | |
|     </tr>
 | |
| 
 | |
|     <tr>
 | |
|         <th>Decomposition</th>
 | |
|         <th>Requirements on the matrix</th>
 | |
|         <th>Speed</th>
 | |
|         <th>Algorithm reliability and accuracy</th>
 | |
|         <th>Rank-revealing</th>
 | |
|         <th>Allows to compute (besides linear solving)</th>
 | |
|         <th>Linear solver provided by Eigen</th>
 | |
|         <th>Maturity of Eigen's implementation</th>
 | |
|         <th>Optimizations</th>
 | |
|     </tr>
 | |
| 
 | |
|     <tr>
 | |
|         <td>PartialPivLU</td>
 | |
|         <td>Invertible</td>
 | |
|         <td>Fast</td>
 | |
|         <td>Depends on condition number</td>
 | |
|         <td>-</td>
 | |
|         <td>-</td>
 | |
|         <td>Yes</td>
 | |
|         <td>Excellent</td>
 | |
|         <td>Blocking, Implicit MT</td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr class="alt">
 | |
|         <td>FullPivLU</td>
 | |
|         <td>-</td>
 | |
|         <td>Slow</td>
 | |
|         <td>Proven</td>
 | |
|         <td>Yes</td>
 | |
|         <td>-</td>
 | |
|         <td>Yes</td>
 | |
|         <td>Excellent</td>
 | |
|         <td>-</td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr>
 | |
|         <td>HouseholderQR</td>
 | |
|         <td>-</td>
 | |
|         <td>Fast</td>
 | |
|         <td>Depends on condition number</td>
 | |
|         <td>-</td>
 | |
|         <td>Orthogonalization</td>
 | |
|         <td>Yes</td>
 | |
|         <td>Excellent</td>
 | |
|         <td>Blocking</td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr class="alt">
 | |
|         <td>ColPivHouseholderQR</td>
 | |
|         <td>-</td>
 | |
|         <td>Fast</td>
 | |
|         <td>Good</td>
 | |
|         <td>Yes</td>
 | |
|         <td>Orthogonalization</td>
 | |
|         <td>Yes</td>
 | |
|         <td>Excellent</td>
 | |
|         <td><em>Soon: blocking</em></td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr>
 | |
|         <td>FullPivHouseholderQR</td>
 | |
|         <td>-</td>
 | |
|         <td>Slow</td>
 | |
|         <td>Proven</td>
 | |
|         <td>Yes</td>
 | |
|         <td>Orthogonalization</td>
 | |
|         <td>Yes</td>
 | |
|         <td>Average</td>
 | |
|         <td>-</td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr class="alt">
 | |
|         <td>LLT</td>
 | |
|         <td>Positive definite</td>
 | |
|         <td>Very fast</td>
 | |
|         <td>Depends on condition number</td>
 | |
|         <td>-</td>
 | |
|         <td>-</td>
 | |
|         <td>Yes</td>
 | |
|         <td>Excellent</td>
 | |
|         <td>Blocking</td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr>
 | |
|         <td>LDLT</td>
 | |
|         <td>Positive or negative semidefinite<sup><a href="#note1">1</a></sup></td>
 | |
|         <td>Very fast</td>
 | |
|         <td>Good</td>
 | |
|         <td>-</td>
 | |
|         <td>-</td>
 | |
|         <td>Yes</td>
 | |
|         <td>Excellent</td>
 | |
|         <td><em>Soon: blocking</em></td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr><th class="inter" colspan="9">\n Singular values and eigenvalues decompositions</th></tr>
 | |
| 
 | |
|     <tr>
 | |
|         <td>BDCSVD (divide \& conquer)</td>
 | |
|         <td>-</td>
 | |
|         <td>One of the fastest SVD algorithms</td>
 | |
|         <td>Excellent</td>
 | |
|         <td>Yes</td>
 | |
|         <td>Singular values/vectors, least squares</td>
 | |
|         <td>Yes (and does least squares)</td>
 | |
|         <td>Excellent</td>
 | |
|         <td>Blocked bidiagonalization</td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr>
 | |
|         <td>JacobiSVD (two-sided)</td>
 | |
|         <td>-</td>
 | |
|         <td>Slow (but fast for small matrices)</td>
 | |
|         <td>Proven<sup><a href="#note3">3</a></sup></td>
 | |
|         <td>Yes</td>
 | |
|         <td>Singular values/vectors, least squares</td>
 | |
|         <td>Yes (and does least squares)</td>
 | |
|         <td>Excellent</td>
 | |
|         <td>R-SVD</td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr class="alt">
 | |
|         <td>SelfAdjointEigenSolver</td>
 | |
|         <td>Self-adjoint</td>
 | |
|         <td>Fast-average<sup><a href="#note2">2</a></sup></td>
 | |
|         <td>Good</td>
 | |
|         <td>Yes</td>
 | |
|         <td>Eigenvalues/vectors</td>
 | |
|         <td>-</td>
 | |
|         <td>Excellent</td>
 | |
|         <td><em>Closed forms for 2x2 and 3x3</em></td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr>
 | |
|         <td>ComplexEigenSolver</td>
 | |
|         <td>Square</td>
 | |
|         <td>Slow-very slow<sup><a href="#note2">2</a></sup></td>
 | |
|         <td>Depends on condition number</td>
 | |
|         <td>Yes</td>
 | |
|         <td>Eigenvalues/vectors</td>
 | |
|         <td>-</td>
 | |
|         <td>Average</td>
 | |
|         <td>-</td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr class="alt">
 | |
|         <td>EigenSolver</td>
 | |
|         <td>Square and real</td>
 | |
|         <td>Average-slow<sup><a href="#note2">2</a></sup></td>
 | |
|         <td>Depends on condition number</td>
 | |
|         <td>Yes</td>
 | |
|         <td>Eigenvalues/vectors</td>
 | |
|         <td>-</td>
 | |
|         <td>Average</td>
 | |
|         <td>-</td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr>
 | |
|         <td>GeneralizedSelfAdjointEigenSolver</td>
 | |
|         <td>Square</td>
 | |
|         <td>Fast-average<sup><a href="#note2">2</a></sup></td>
 | |
|         <td>Depends on condition number</td>
 | |
|         <td>-</td>
 | |
|         <td>Generalized eigenvalues/vectors</td>
 | |
|         <td>-</td>
 | |
|         <td>Good</td>
 | |
|         <td>-</td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr><th class="inter" colspan="9">\n Helper decompositions</th></tr>
 | |
| 
 | |
|     <tr>
 | |
|         <td>RealSchur</td>
 | |
|         <td>Square and real</td>
 | |
|         <td>Average-slow<sup><a href="#note2">2</a></sup></td>
 | |
|         <td>Depends on condition number</td>
 | |
|         <td>Yes</td>
 | |
|         <td>-</td>
 | |
|         <td>-</td>
 | |
|         <td>Average</td>
 | |
|         <td>-</td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr class="alt">
 | |
|         <td>ComplexSchur</td>
 | |
|         <td>Square</td>
 | |
|         <td>Slow-very slow<sup><a href="#note2">2</a></sup></td>
 | |
|         <td>Depends on condition number</td>
 | |
|         <td>Yes</td>
 | |
|         <td>-</td>
 | |
|         <td>-</td>
 | |
|         <td>Average</td>
 | |
|         <td>-</td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr class="alt">
 | |
|         <td>Tridiagonalization</td>
 | |
|         <td>Self-adjoint</td>
 | |
|         <td>Fast</td>
 | |
|         <td>Good</td>
 | |
|         <td>-</td>
 | |
|         <td>-</td>
 | |
|         <td>-</td>
 | |
|         <td>Good</td>
 | |
|         <td><em>Soon: blocking</em></td>
 | |
|     </tr>
 | |
| 
 | |
|     <tr>
 | |
|         <td>HessenbergDecomposition</td>
 | |
|         <td>Square</td>
 | |
|         <td>Average</td>
 | |
|         <td>Good</td>
 | |
|         <td>-</td>
 | |
|         <td>-</td>
 | |
|         <td>-</td>
 | |
|         <td>Good</td>
 | |
|         <td><em>Soon: blocking</em></td>
 | |
|     </tr>
 | |
| 
 | |
| </table>
 | |
| 
 | |
| \b Notes:
 | |
| <ul>
 | |
| <li><a name="note1">\b 1: </a>There exist two variants of the LDLT algorithm. Eigen's one produces a pure diagonal D matrix, and therefore it cannot handle indefinite matrices, unlike Lapack's one which produces a block diagonal D matrix.</li>
 | |
| <li><a name="note2">\b 2: </a>Eigenvalues, SVD and Schur decompositions rely on iterative algorithms. Their convergence speed depends on how well the eigenvalues are separated.</li>
 | |
| <li><a name="note3">\b 3: </a>Our JacobiSVD is two-sided, making for proven and optimal precision for square matrices. For non-square matrices, we have to use a QR preconditioner first. The default choice, ColPivHouseholderQR, is already very reliable, but if you want it to be proven, use FullPivHouseholderQR instead.
 | |
| </ul>
 | |
| 
 | |
| \section TopicLinAlgTerminology Terminology
 | |
| 
 | |
| <dl>
 | |
|   <dt><b>Selfadjoint</b></dt>
 | |
|     <dd>For a real matrix, selfadjoint is a synonym for symmetric. For a complex matrix, selfadjoint is a synonym for \em hermitian.
 | |
|         More generally, a matrix \f$ A \f$ is selfadjoint if and only if it is equal to its adjoint \f$ A^* \f$. The adjoint is also called the \em conjugate \em transpose. </dd>
 | |
|   <dt><b>Positive/negative definite</b></dt>
 | |
|     <dd>A selfadjoint matrix \f$ A \f$ is positive definite if \f$ v^* A v > 0 \f$ for any non zero vector \f$ v \f$.
 | |
|         In the same vein, it is negative definite if \f$ v^* A v < 0 \f$ for any non zero vector \f$ v \f$ </dd>
 | |
|   <dt><b>Positive/negative semidefinite</b></dt>
 | |
|     <dd>A selfadjoint matrix \f$ A \f$ is positive semi-definite if \f$ v^* A v \ge 0 \f$ for any non zero vector \f$ v \f$.
 | |
|         In the same vein, it is negative semi-definite if \f$ v^* A v \le 0 \f$ for any non zero vector \f$ v \f$ </dd>
 | |
| 
 | |
|   <dt><b>Blocking</b></dt>
 | |
|     <dd>Means the algorithm can work per block, whence guaranteeing a good scaling of the performance for large matrices.</dd>
 | |
|   <dt><b>Implicit Multi Threading (MT)</b></dt>
 | |
|     <dd>Means the algorithm can take advantage of multicore processors via OpenMP. "Implicit" means the algortihm itself is not parallelized, but that it relies on parallelized matrix-matrix product routines.</dd>
 | |
|   <dt><b>Explicit Multi Threading (MT)</b></dt>
 | |
|     <dd>Means the algorithm is explicitly parallelized to take advantage of multicore processors via OpenMP.</dd>
 | |
|   <dt><b>Meta-unroller</b></dt>
 | |
|     <dd>Means the algorithm is automatically and explicitly unrolled for very small fixed size matrices.</dd>
 | |
|   <dt><b></b></dt>
 | |
|     <dd></dd>
 | |
| </dl>
 | |
| 
 | |
| 
 | |
| */
 | |
| 
 | |
| }
 | 
