mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			599 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			599 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
 | |
| #define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
 | |
| 
 | |
| typedef int TensorIndex;
 | |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
 | |
| 
 | |
| #include "benchmark.h"
 | |
| #include "unsupported/Eigen/CXX11/Tensor"
 | |
| 
 | |
| #define BENCHMARK_RANGE(bench, lo, hi) BENCHMARK(bench)->Range(lo, hi)
 | |
| 
 | |
| using Eigen::Tensor;
 | |
| using Eigen::TensorMap;
 | |
| 
 | |
| // TODO(bsteiner): also templatize on the input type since we have users
 | |
| // for int8 as well as floats.
 | |
| template <typename Device, typename T>
 | |
| class BenchmarkSuite {
 | |
|  public:
 | |
|   BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n)
 | |
|       : m_(m), k_(k), n_(n), device_(device) {
 | |
|     initialize();
 | |
|   }
 | |
| 
 | |
|   BenchmarkSuite(const Device& device, size_t m)
 | |
|       : m_(m), k_(m), n_(m), device_(device) {
 | |
|     initialize();
 | |
|   }
 | |
| 
 | |
|   BenchmarkSuite(const Device& device, size_t m, size_t k)
 | |
|       : m_(1), k_(k), n_(m), device_(device) {
 | |
|     initialize();
 | |
|   }
 | |
| 
 | |
|   ~BenchmarkSuite() {
 | |
|     device_.deallocate(a_);
 | |
|     device_.deallocate(b_);
 | |
|     device_.deallocate(c_);
 | |
|   }
 | |
| 
 | |
|   void memcpy(int num_iters) {
 | |
|     eigen_assert(m_ == k_ && k_ == n_);
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       device_.memcpy(c_, a_, m_ * m_ * sizeof(T));
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       device_.memcpy(c_, a_, m_ * m_ * sizeof(T));
 | |
|     }
 | |
|     // Record the number of values copied per second
 | |
|     finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   void typeCasting(int num_iters) {
 | |
|     eigen_assert(m_ == n_);
 | |
|     Eigen::array<TensorIndex, 2> sizes;
 | |
|     if (sizeof(T) >= sizeof(int)) {
 | |
|       sizes[0] = m_;
 | |
|       sizes[1] = k_;
 | |
|     } else {
 | |
|       sizes[0] = m_ * sizeof(T) / sizeof(int);
 | |
|       sizes[1] = k_ * sizeof(T) / sizeof(int);
 | |
|     }
 | |
|     const TensorMap<Tensor<int, 2, 0, TensorIndex>, Eigen::Aligned> A((int*)a_,
 | |
|                                                                       sizes);
 | |
|     TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_, sizes);
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       B.device(device_) = A.template cast<T>();
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       B.device(device_) = A.template cast<T>();
 | |
|     }
 | |
|     // Record the number of values copied per second
 | |
|     finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   void random(int num_iters) {
 | |
|     eigen_assert(m_ == k_ && k_ == n_);
 | |
|     Eigen::array<TensorIndex, 2> sizes;
 | |
|     sizes[0] = m_;
 | |
|     sizes[1] = m_;
 | |
|     TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       C.device(device_) = C.random();
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       C.device(device_) = C.random();
 | |
|     }
 | |
|     // Record the number of random numbers generated per second
 | |
|     finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   void slicing(int num_iters) {
 | |
|     eigen_assert(m_ == k_ && k_ == n_);
 | |
|     Eigen::array<TensorIndex, 2> sizes;
 | |
|     sizes[0] = m_;
 | |
|     sizes[1] = m_;
 | |
|     const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
 | |
|     const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
 | |
|     TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
 | |
| 
 | |
|     const Eigen::DSizes<TensorIndex, 2> quarter_sizes(m_ / 2, m_ / 2);
 | |
|     const Eigen::DSizes<TensorIndex, 2> first_quadrant(0, 0);
 | |
|     const Eigen::DSizes<TensorIndex, 2> second_quadrant(0, m_ / 2);
 | |
|     const Eigen::DSizes<TensorIndex, 2> third_quadrant(m_ / 2, 0);
 | |
|     const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(m_ / 2, m_ / 2);
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       C.slice(first_quadrant, quarter_sizes).device(device_) =
 | |
|           A.slice(first_quadrant, quarter_sizes);
 | |
|       C.slice(second_quadrant, quarter_sizes).device(device_) =
 | |
|           B.slice(second_quadrant, quarter_sizes);
 | |
|       C.slice(third_quadrant, quarter_sizes).device(device_) =
 | |
|           A.slice(third_quadrant, quarter_sizes);
 | |
|       C.slice(fourth_quadrant, quarter_sizes).device(device_) =
 | |
|           B.slice(fourth_quadrant, quarter_sizes);
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       C.slice(first_quadrant, quarter_sizes).device(device_) =
 | |
|           A.slice(first_quadrant, quarter_sizes);
 | |
|       C.slice(second_quadrant, quarter_sizes).device(device_) =
 | |
|           B.slice(second_quadrant, quarter_sizes);
 | |
|       C.slice(third_quadrant, quarter_sizes).device(device_) =
 | |
|           A.slice(third_quadrant, quarter_sizes);
 | |
|       C.slice(fourth_quadrant, quarter_sizes).device(device_) =
 | |
|           B.slice(fourth_quadrant, quarter_sizes);
 | |
|     }
 | |
|     // Record the number of values copied from the rhs slice to the lhs slice
 | |
|     // each second
 | |
|     finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   void rowChip(int num_iters) {
 | |
|     Eigen::array<TensorIndex, 2> input_size;
 | |
|     input_size[0] = k_;
 | |
|     input_size[1] = n_;
 | |
|     const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_,
 | |
|                                                                     input_size);
 | |
|     Eigen::array<TensorIndex, 1> output_size;
 | |
|     output_size[0] = n_;
 | |
|     TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       C.device(device_) = B.chip(iter % k_, 0);
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       C.device(device_) = B.chip(iter % k_, 0);
 | |
|     }
 | |
|     // Record the number of values copied from the rhs chip to the lhs.
 | |
|     finalizeBenchmark(static_cast<int64_t>(n_) * num_iters);
 | |
|   }
 | |
| 
 | |
|   void colChip(int num_iters) {
 | |
|     Eigen::array<TensorIndex, 2> input_size;
 | |
|     input_size[0] = k_;
 | |
|     input_size[1] = n_;
 | |
|     const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_,
 | |
|                                                                     input_size);
 | |
|     Eigen::array<TensorIndex, 1> output_size;
 | |
|     output_size[0] = n_;
 | |
|     TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       C.device(device_) = B.chip(iter % n_, 1);
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       C.device(device_) = B.chip(iter % n_, 1);
 | |
|     }
 | |
|     // Record the number of values copied from the rhs chip to the lhs.
 | |
|     finalizeBenchmark(static_cast<int64_t>(n_) * num_iters);
 | |
|   }
 | |
| 
 | |
|   void shuffling(int num_iters) {
 | |
|     eigen_assert(m_ == n_);
 | |
|     Eigen::array<TensorIndex, 2> size_a;
 | |
|     size_a[0] = m_;
 | |
|     size_a[1] = k_;
 | |
|     const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
 | |
|     Eigen::array<TensorIndex, 2> size_b;
 | |
|     size_b[0] = k_;
 | |
|     size_b[1] = m_;
 | |
|     TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
 | |
| 
 | |
|     Eigen::array<int, 2> shuffle;
 | |
|     shuffle[0] = 1;
 | |
|     shuffle[1] = 0;
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       B.device(device_) = A.shuffle(shuffle);
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       B.device(device_) = A.shuffle(shuffle);
 | |
|     }
 | |
|     // Record the number of values shuffled from A and copied to B each second
 | |
|     finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   void padding(int num_iters) {
 | |
|     eigen_assert(m_ == k_);
 | |
|     Eigen::array<TensorIndex, 2> size_a;
 | |
|     size_a[0] = m_;
 | |
|     size_a[1] = k_ - 3;
 | |
|     const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
 | |
|     Eigen::array<TensorIndex, 2> size_b;
 | |
|     size_b[0] = k_;
 | |
|     size_b[1] = m_;
 | |
|     TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
 | |
| 
 | |
| #if defined(EIGEN_HAS_INDEX_LIST)
 | |
|     Eigen::IndexPairList<Eigen::type2indexpair<0, 0>,
 | |
|                          Eigen::type2indexpair<2, 1> >
 | |
|         paddings;
 | |
| #else
 | |
|     Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings;
 | |
|     paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0);
 | |
|     paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1);
 | |
| #endif
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       B.device(device_) = A.pad(paddings);
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       B.device(device_) = A.pad(paddings);
 | |
|     }
 | |
|     // Record the number of values copied from the padded tensor A each second
 | |
|     finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   void striding(int num_iters) {
 | |
|     eigen_assert(m_ == k_);
 | |
|     Eigen::array<TensorIndex, 2> size_a;
 | |
|     size_a[0] = m_;
 | |
|     size_a[1] = k_;
 | |
|     const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
 | |
|     Eigen::array<TensorIndex, 2> size_b;
 | |
|     size_b[0] = m_;
 | |
|     size_b[1] = k_ / 2;
 | |
|     TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, size_b);
 | |
| 
 | |
| #ifndef EIGEN_HAS_INDEX_LIST
 | |
|     Eigen::array<TensorIndex, 2> strides;
 | |
|     strides[0] = 1;
 | |
|     strides[1] = 2;
 | |
| #else
 | |
|     // Take advantage of cxx11 to give the compiler information it can use to
 | |
|     // optimize the code.
 | |
|     Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> > strides;
 | |
| #endif
 | |
| 
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       B.device(device_) = A.stride(strides);
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       B.device(device_) = A.stride(strides);
 | |
|     }
 | |
|     // Record the number of values copied from the padded tensor A each second
 | |
|     finalizeBenchmark(static_cast<int64_t>(m_) * k_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   void broadcasting(int num_iters) {
 | |
|     Eigen::array<TensorIndex, 2> size_a;
 | |
|     size_a[0] = m_;
 | |
|     size_a[1] = 1;
 | |
|     const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, size_a);
 | |
|     Eigen::array<TensorIndex, 2> size_c;
 | |
|     size_c[0] = m_;
 | |
|     size_c[1] = n_;
 | |
|     TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, size_c);
 | |
| 
 | |
| #ifndef EIGEN_HAS_INDEX_LIST
 | |
|     Eigen::array<int, 2> broadcast;
 | |
|     broadcast[0] = 1;
 | |
|     broadcast[1] = n_;
 | |
| #else
 | |
|     // Take advantage of cxx11 to give the compiler information it can use to
 | |
|     // optimize the code.
 | |
|     Eigen::IndexList<Eigen::type2index<1>, int> broadcast;
 | |
|     broadcast.set(1, n_);
 | |
| #endif
 | |
| 
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       C.device(device_) = A.broadcast(broadcast);
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       C.device(device_) = A.broadcast(broadcast);
 | |
|     }
 | |
|     // Record the number of values broadcasted from A and copied to C each
 | |
|     // second
 | |
|     finalizeBenchmark(static_cast<int64_t>(m_) * n_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   void coeffWiseOp(int num_iters) {
 | |
|     eigen_assert(m_ == k_ && k_ == n_);
 | |
|     Eigen::array<TensorIndex, 2> sizes;
 | |
|     sizes[0] = m_;
 | |
|     sizes[1] = m_;
 | |
|     const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
 | |
|     const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
 | |
|     TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       C.device(device_) = A * A.constant(static_cast<T>(3.14)) +
 | |
|                           B * B.constant(static_cast<T>(2.7));
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       C.device(device_) = A * A.constant(static_cast<T>(3.14)) +
 | |
|                           B * B.constant(static_cast<T>(2.7));
 | |
|     }
 | |
|     // Record the number of FLOP executed per second (2 multiplications and
 | |
|     // 1 addition per value)
 | |
|     finalizeBenchmark(static_cast<int64_t>(3) * m_ * m_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   void algebraicFunc(int num_iters) {
 | |
|     eigen_assert(m_ == k_ && k_ == n_);
 | |
|     Eigen::array<TensorIndex, 2> sizes;
 | |
|     sizes[0] = m_;
 | |
|     sizes[1] = m_;
 | |
|     const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
 | |
|     const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
 | |
|     TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
 | |
| 
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       C.device(device_) = A.rsqrt() + B.sqrt() * B.square();
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       C.device(device_) = A.rsqrt() + B.sqrt() * B.square();
 | |
|     }
 | |
|     // Record the number of FLOP executed per second (assuming one operation
 | |
|     // per value)
 | |
|     finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   void transcendentalFunc(int num_iters) {
 | |
|     eigen_assert(m_ == k_ && k_ == n_);
 | |
|     Eigen::array<TensorIndex, 2> sizes;
 | |
|     sizes[0] = m_;
 | |
|     sizes[1] = m_;
 | |
|     const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizes);
 | |
|     const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizes);
 | |
|     TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizes);
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       C.device(device_) = A.exp() + B.log();
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       C.device(device_) = A.exp() + B.log();
 | |
|     }
 | |
|     // Record the number of FLOP executed per second (assuming one operation
 | |
|     // per value)
 | |
|     finalizeBenchmark(static_cast<int64_t>(m_) * m_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   // Row reduction
 | |
|   void rowReduction(int num_iters) {
 | |
|     Eigen::array<TensorIndex, 2> input_size;
 | |
|     input_size[0] = k_;
 | |
|     input_size[1] = n_;
 | |
|     const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_,
 | |
|                                                                     input_size);
 | |
|     Eigen::array<TensorIndex, 1> output_size;
 | |
|     output_size[0] = n_;
 | |
|     TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
 | |
| 
 | |
| #ifndef EIGEN_HAS_INDEX_LIST
 | |
|     Eigen::array<TensorIndex, 1> sum_along_dim;
 | |
|     sum_along_dim[0] = 0;
 | |
| #else
 | |
|     // Take advantage of cxx11 to give the compiler information it can use to
 | |
|     // optimize the code.
 | |
|     Eigen::IndexList<Eigen::type2index<0> > sum_along_dim;
 | |
| #endif
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       C.device(device_) = B.sum(sum_along_dim);
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       C.device(device_) = B.sum(sum_along_dim);
 | |
|     }
 | |
|     // Record the number of FLOP executed per second (assuming one operation
 | |
|     // per value)
 | |
|     finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   // Column reduction
 | |
|   void colReduction(int num_iters) {
 | |
|     Eigen::array<TensorIndex, 2> input_size;
 | |
|     input_size[0] = k_;
 | |
|     input_size[1] = n_;
 | |
|     const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_,
 | |
|                                                                     input_size);
 | |
|     Eigen::array<TensorIndex, 1> output_size;
 | |
|     output_size[0] = k_;
 | |
|     TensorMap<Tensor<T, 1, 0, TensorIndex>, Eigen::Aligned> A(a_, output_size);
 | |
| 
 | |
| #ifndef EIGEN_HAS_INDEX_LIST
 | |
|     Eigen::array<TensorIndex, 1> sum_along_dim;
 | |
|     sum_along_dim[0] = 1;
 | |
| #else
 | |
|     // Take advantage of cxx11 to give the compiler information it can use to
 | |
|     // optimize the code.
 | |
|     Eigen::IndexList<Eigen::type2index<1> > sum_along_dim;
 | |
| #endif
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       A.device(device_) = B.sum(sum_along_dim);
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       A.device(device_) = B.sum(sum_along_dim);
 | |
|     }
 | |
|     // Record the number of FLOP executed per second (assuming one operation
 | |
|     // per value)
 | |
|     finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   // Full reduction
 | |
|   void fullReduction(int num_iters) {
 | |
|     Eigen::array<TensorIndex, 2> input_size;
 | |
|     input_size[0] = k_;
 | |
|     input_size[1] = n_;
 | |
|     const TensorMap<Tensor<T, 2, 0, TensorIndex>, Eigen::Aligned> B(b_,
 | |
|                                                                     input_size);
 | |
|     Eigen::array<TensorIndex, 0> output_size;
 | |
|     TensorMap<Tensor<T, 0, 0, TensorIndex>, Eigen::Aligned> C(c_, output_size);
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       C.device(device_) = B.sum();
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       C.device(device_) = B.sum();
 | |
|     }
 | |
|     // Record the number of FLOP executed per second (assuming one operation
 | |
|     // per value)
 | |
|     finalizeBenchmark(static_cast<int64_t>(k_) * n_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   // do a contraction which is equivalent to a matrix multiplication
 | |
|   void contraction(int num_iters) {
 | |
|     contraction<static_cast<int>(Eigen::ColMajor)>(num_iters, false, false);
 | |
|   }
 | |
| 
 | |
|   void contractionRowMajor(int num_iters) {
 | |
|     contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, false, false);
 | |
|   }
 | |
| 
 | |
|   void contractionRowMajorAT(int num_iters) {
 | |
|     contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, true, false);
 | |
|   }
 | |
| 
 | |
|   void contractionRowMajorBT(int num_iters) {
 | |
|     contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, false, true);
 | |
|   }
 | |
| 
 | |
|   void contractionRowMajorABT(int num_iters) {
 | |
|     contraction<static_cast<int>(Eigen::RowMajor)>(num_iters, true, true);
 | |
|   }
 | |
| 
 | |
|   void convolution(int num_iters, int kernel_x, int kernel_y) {
 | |
|     Eigen::array<TensorIndex, 2> input_sizes;
 | |
|     input_sizes[0] = m_;
 | |
|     input_sizes[1] = n_;
 | |
|     TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, input_sizes);
 | |
|     Eigen::array<TensorIndex, 2> kernel_sizes;
 | |
|     kernel_sizes[0] = kernel_x;
 | |
|     kernel_sizes[1] = kernel_y;
 | |
|     TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, kernel_sizes);
 | |
|     Eigen::array<TensorIndex, 2> result_sizes;
 | |
|     result_sizes[0] = m_ - kernel_x + 1;
 | |
|     result_sizes[1] = n_ - kernel_y + 1;
 | |
|     TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, result_sizes);
 | |
|     Eigen::array<TensorIndex, 2> dims;
 | |
|     dims[0] = 0;
 | |
|     dims[1] = 1;
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       C.device(device_) = A.convolve(B, dims);
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       C.device(device_) = A.convolve(B, dims);
 | |
|     }
 | |
|     // Record the number of FLOPs executed per second (kernel_size
 | |
|     // multiplications and additions for each value in the resulting tensor)
 | |
|     finalizeBenchmark(static_cast<int64_t>(2) * (m_ - kernel_x + 1) *
 | |
|                       (n_ - kernel_y + 1) * kernel_x * kernel_y * num_iters);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // do a contraction which is equivalent to a matrix multiplication
 | |
|   template <int Layout>
 | |
|   void contraction(int num_iters, bool trans_a, bool trans_b) {
 | |
|     Eigen::array<TensorIndex, 2> sizeA;
 | |
|     sizeA[0] = (trans_a ? k_ : m_);
 | |
|     sizeA[1] = (trans_a ? m_ : k_);
 | |
|     Eigen::array<TensorIndex, 2> sizeB;
 | |
|     sizeB[0] = (trans_b ? n_ : k_);
 | |
|     sizeB[1] = (trans_b ? k_ : n_);
 | |
|     Eigen::array<TensorIndex, 2> sizeC;
 | |
|     sizeC[0] = m_;
 | |
|     sizeC[1] = n_;
 | |
| 
 | |
|     const TensorMap<Tensor<T, 2, Layout>, Eigen::Aligned> A(a_, sizeA);
 | |
|     const TensorMap<Tensor<T, 2, Layout>, Eigen::Aligned> B(b_, sizeB);
 | |
|     TensorMap<Tensor<T, 2, Layout>, Eigen::Aligned> C(c_, sizeC);
 | |
| 
 | |
|     typedef typename Tensor<T, 2, Layout>::DimensionPair DimPair;
 | |
|     Eigen::array<DimPair, 1> dims;
 | |
|     TensorIndex a_contract_dim = (trans_a ? 0 : 1);
 | |
|     TensorIndex b_contract_dim = (trans_b ? 1 : 0);
 | |
|     dims[0] = DimPair(a_contract_dim, b_contract_dim);
 | |
| #ifdef EIGEN_USE_SYCL  // warmup for sycl
 | |
|     for (int iter = 0; iter < 10; ++iter) {
 | |
|       C.device(device_) = A.contract(B, dims);
 | |
|     }
 | |
| #endif
 | |
|     StartBenchmarkTiming();
 | |
|     for (int iter = 0; iter < num_iters; ++iter) {
 | |
|       C.device(device_) = A.contract(B, dims);
 | |
|     }
 | |
|     // Record the number of FLOP executed per second (size_ multiplications and
 | |
|     // additions for each value in the resulting tensor)
 | |
|     finalizeBenchmark(static_cast<int64_t>(2) * m_ * n_ * k_ * num_iters);
 | |
|   }
 | |
| 
 | |
|   void initialize() {
 | |
|     a_ = (T*)device_.allocate(m_ * k_ * sizeof(T));
 | |
|     b_ = (T*)device_.allocate(k_ * n_ * sizeof(T));
 | |
|     c_ = (T*)device_.allocate(m_ * n_ * sizeof(T));
 | |
| 
 | |
|     // Initialize the content of the memory pools to prevent asan from
 | |
|     // complaining.
 | |
|     device_.memset(a_, 12, m_ * k_ * sizeof(T));
 | |
|     device_.memset(b_, 23, k_ * n_ * sizeof(T));
 | |
|     device_.memset(c_, 31, m_ * n_ * sizeof(T));
 | |
|   }
 | |
| 
 | |
|   inline void finalizeBenchmark(int64_t num_items) {
 | |
| #if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
 | |
|     if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) {
 | |
|       device_.synchronize();
 | |
|     }
 | |
| #elif defined(EIGEN_USE_SYCL)
 | |
|     if (Eigen::internal::is_same<Device, Eigen::SyclDevice>::value) {
 | |
|       device_.synchronize();
 | |
|     }
 | |
| 
 | |
| #endif
 | |
|     StopBenchmarkTiming();
 | |
|     SetBenchmarkFlopsProcessed(num_items);
 | |
|   }
 | |
| 
 | |
|   TensorIndex m_;
 | |
|   TensorIndex k_;
 | |
|   TensorIndex n_;
 | |
|   T* a_;
 | |
|   T* b_;
 | |
|   T* c_;
 | |
|   Device device_;
 | |
| };
 | |
| #endif  // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
 | 
