mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 03:46:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			227 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			227 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
 | |
| // g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I..
 | |
| // -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 &&
 | |
| // ./a.out
 | |
| // g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I..
 | |
| // -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
 | |
| // -DNOGMM -DNOMTL
 | |
| // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/
 | |
| // /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
 | |
| 
 | |
| #ifndef SIZE
 | |
| #define SIZE 10000
 | |
| #endif
 | |
| 
 | |
| #ifndef DENSITY
 | |
| #define DENSITY 0.01
 | |
| #endif
 | |
| 
 | |
| #ifndef REPEAT
 | |
| #define REPEAT 1
 | |
| #endif
 | |
| 
 | |
| #include "BenchSparseUtil.h"
 | |
| 
 | |
| #ifndef MINDENSITY
 | |
| #define MINDENSITY 0.0004
 | |
| #endif
 | |
| 
 | |
| #ifndef NBTRIES
 | |
| #define NBTRIES 10
 | |
| #endif
 | |
| 
 | |
| #define BENCH(X)                          \
 | |
|   timer.reset();                          \
 | |
|   for (int _j = 0; _j < NBTRIES; ++_j) {  \
 | |
|     timer.start();                        \
 | |
|     for (int _k = 0; _k < REPEAT; ++_k) { \
 | |
|       X                                   \
 | |
|     }                                     \
 | |
|     timer.stop();                         \
 | |
|   }
 | |
| 
 | |
| typedef SparseMatrix<Scalar, UpperTriangular> EigenSparseTriMatrix;
 | |
| typedef SparseMatrix<Scalar, RowMajorBit | UpperTriangular>
 | |
|     EigenSparseTriMatrixRow;
 | |
| 
 | |
| void fillMatrix(float density, int rows, int cols, EigenSparseTriMatrix &dst) {
 | |
|   dst.startFill(rows * cols * density);
 | |
|   for (int j = 0; j < cols; j++) {
 | |
|     for (int i = 0; i < j; i++) {
 | |
|       Scalar v = (internal::random<float>(0, 1) < density)
 | |
|                      ? internal::random<Scalar>()
 | |
|                      : 0;
 | |
|       if (v != 0) dst.fill(i, j) = v;
 | |
|     }
 | |
|     dst.fill(j, j) = internal::random<Scalar>();
 | |
|   }
 | |
|   dst.endFill();
 | |
| }
 | |
| 
 | |
| int main(int argc, char *argv[]) {
 | |
|   int rows = SIZE;
 | |
|   int cols = SIZE;
 | |
|   float density = DENSITY;
 | |
|   BenchTimer timer;
 | |
| #if 1
 | |
|   EigenSparseTriMatrix sm1(rows, cols);
 | |
|   typedef Matrix<Scalar, Dynamic, 1> DenseVector;
 | |
|   DenseVector b = DenseVector::Random(cols);
 | |
|   DenseVector x = DenseVector::Random(cols);
 | |
| 
 | |
|   bool densedone = false;
 | |
| 
 | |
|   for (float density = DENSITY; density >= MINDENSITY; density *= 0.5) {
 | |
|     EigenSparseTriMatrix sm1(rows, cols);
 | |
|     fillMatrix(density, rows, cols, sm1);
 | |
| 
 | |
| // dense matrices
 | |
| #ifdef DENSEMATRIX
 | |
|     if (!densedone) {
 | |
|       densedone = true;
 | |
|       std::cout << "Eigen Dense\t" << density * 100 << "%\n";
 | |
|       DenseMatrix m1(rows, cols);
 | |
|       Matrix<Scalar, Dynamic, Dynamic, Dynamic, Dynamic, RowMajorBit> m2(rows,
 | |
|                                                                          cols);
 | |
|       eiToDense(sm1, m1);
 | |
|       m2 = m1;
 | |
| 
 | |
|       BENCH(x = m1.marked<UpperTriangular>().solveTriangular(b);)
 | |
|       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
 | |
|       //       std::cerr << x.transpose() << "\n";
 | |
| 
 | |
|       BENCH(x = m2.marked<UpperTriangular>().solveTriangular(b);)
 | |
|       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl;
 | |
|       //       std::cerr << x.transpose() << "\n";
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // eigen sparse matrices
 | |
|     {
 | |
|       std::cout << "Eigen sparse\t" << density * 100 << "%\n";
 | |
|       EigenSparseTriMatrixRow sm2 = sm1;
 | |
| 
 | |
|       BENCH(x = sm1.solveTriangular(b);)
 | |
|       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
 | |
|       //       std::cerr << x.transpose() << "\n";
 | |
| 
 | |
|       BENCH(x = sm2.solveTriangular(b);)
 | |
|       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl;
 | |
|       //       std::cerr << x.transpose() << "\n";
 | |
| 
 | |
|       //       x = b;
 | |
|       //       BENCH(sm1.inverseProductInPlace(x);)
 | |
|       //       std::cout << "   colmajor^-1 * b:\t" << timer.value() << "
 | |
|       //       (inplace)" << endl;
 | |
|       //       std::cerr << x.transpose() << "\n";
 | |
|       //
 | |
|       //       x = b;
 | |
|       //       BENCH(sm2.inverseProductInPlace(x);)
 | |
|       //       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << "
 | |
|       //       (inplace)" << endl;
 | |
|       //       std::cerr << x.transpose() << "\n";
 | |
|     }
 | |
| 
 | |
| // CSparse
 | |
| #ifdef CSPARSE
 | |
|     {
 | |
|       std::cout << "CSparse \t" << density * 100 << "%\n";
 | |
|       cs *m1;
 | |
|       eiToCSparse(sm1, m1);
 | |
| 
 | |
|       BENCH(x = b; if (!cs_lsolve(m1, x.data())) {
 | |
|         std::cerr << "cs_lsolve failed\n";
 | |
|         break;
 | |
|       };)
 | |
|       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| // GMM++
 | |
| #ifndef NOGMM
 | |
|     {
 | |
|       std::cout << "GMM++ sparse\t" << density * 100 << "%\n";
 | |
|       GmmSparse m1(rows, cols);
 | |
|       gmm::csr_matrix<Scalar> m2;
 | |
|       eiToGmm(sm1, m1);
 | |
|       gmm::copy(m1, m2);
 | |
|       std::vector<Scalar> gmmX(cols), gmmB(cols);
 | |
|       Map<Matrix<Scalar, Dynamic, 1> >(&gmmX[0], cols) = x;
 | |
|       Map<Matrix<Scalar, Dynamic, 1> >(&gmmB[0], cols) = b;
 | |
| 
 | |
|       gmmX = gmmB;
 | |
|       BENCH(gmm::upper_tri_solve(m1, gmmX, false);)
 | |
|       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
 | |
|       //       std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0],
 | |
|       //       cols).transpose() << "\n";
 | |
| 
 | |
|       gmmX = gmmB;
 | |
|       BENCH(gmm::upper_tri_solve(m2, gmmX, false);)
 | |
|       timer.stop();
 | |
|       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl;
 | |
|       //       std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0],
 | |
|       //       cols).transpose() << "\n";
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| // MTL4
 | |
| #ifndef NOMTL
 | |
|     {
 | |
|       std::cout << "MTL4\t" << density * 100 << "%\n";
 | |
|       MtlSparse m1(rows, cols);
 | |
|       MtlSparseRowMajor m2(rows, cols);
 | |
|       eiToMtl(sm1, m1);
 | |
|       m2 = m1;
 | |
|       mtl::dense_vector<Scalar> x(rows, 1.0);
 | |
|       mtl::dense_vector<Scalar> b(rows, 1.0);
 | |
| 
 | |
|       BENCH(x = mtl::upper_trisolve(m1, b);)
 | |
|       std::cout << "   colmajor^-1 * b:\t" << timer.value() << endl;
 | |
|       //       std::cerr << x << "\n";
 | |
| 
 | |
|       BENCH(x = mtl::upper_trisolve(m2, b);)
 | |
|       std::cout << "   rowmajor^-1 * b:\t" << timer.value() << endl;
 | |
|       //       std::cerr << x << "\n";
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     std::cout << "\n\n";
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
|     // bench small matrices (in-place versus return bye value)
 | |
|     {
 | |
|       timer.reset();
 | |
|       for (int _j=0; _j<10; ++_j) {
 | |
|         Matrix4f m = Matrix4f::Random();
 | |
|         Vector4f b = Vector4f::Random();
 | |
|         Vector4f x = Vector4f::Random();
 | |
|         timer.start();
 | |
|         for (int _k=0; _k<1000000; ++_k) {
 | |
|           b = m.inverseProduct(b);
 | |
|         }
 | |
|         timer.stop();
 | |
|       }
 | |
|       std::cout << "4x4 :\t" << timer.value() << endl;
 | |
|     }
 | |
| 
 | |
|     {
 | |
|       timer.reset();
 | |
|       for (int _j=0; _j<10; ++_j) {
 | |
|         Matrix4f m = Matrix4f::Random();
 | |
|         Vector4f b = Vector4f::Random();
 | |
|         Vector4f x = Vector4f::Random();
 | |
|         timer.start();
 | |
|         for (int _k=0; _k<1000000; ++_k) {
 | |
|           m.inverseProductInPlace(x);
 | |
|         }
 | |
|         timer.stop();
 | |
|       }
 | |
|       std::cout << "4x4 IP :\t" << timer.value() << endl;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   return 0;
 | |
| }
 | 
