mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			196 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| // The computeRoots function included in this is based on materials
 | |
| // covered by the following copyright and license:
 | |
| //
 | |
| // Geometric Tools, LLC
 | |
| // Copyright (c) 1998-2010
 | |
| // Distributed under the Boost Software License, Version 1.0.
 | |
| //
 | |
| // Permission is hereby granted, free of charge, to any person or organization
 | |
| // obtaining a copy of the software and accompanying documentation covered by
 | |
| // this license (the "Software") to use, reproduce, display, distribute,
 | |
| // execute, and transmit the Software, and to prepare derivative works of the
 | |
| // Software, and to permit third-parties to whom the Software is furnished to
 | |
| // do so, all subject to the following:
 | |
| //
 | |
| // The copyright notices in the Software and this entire statement, including
 | |
| // the above license grant, this restriction and the following disclaimer,
 | |
| // must be included in all copies of the Software, in whole or in part, and
 | |
| // all derivative works of the Software, unless such copies or derivative
 | |
| // works are solely in the form of machine-executable object code generated by
 | |
| // a source language processor.
 | |
| //
 | |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
 | |
| // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
 | |
| // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
 | |
| // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 | |
| // DEALINGS IN THE SOFTWARE.
 | |
| 
 | |
| #include <bench/BenchTimer.h>
 | |
| #include <Eigen/Core>
 | |
| #include <Eigen/Eigenvalues>
 | |
| #include <Eigen/Geometry>
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace Eigen;
 | |
| using namespace std;
 | |
| 
 | |
| template <typename Matrix, typename Roots>
 | |
| inline void computeRoots(const Matrix& m, Roots& roots) {
 | |
|   typedef typename Matrix::Scalar Scalar;
 | |
|   const Scalar s_inv3 = 1.0 / 3.0;
 | |
|   const Scalar s_sqrt3 = std::sqrt(Scalar(3.0));
 | |
| 
 | |
|   // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The
 | |
|   // eigenvalues are the roots to this equation, all guaranteed to be
 | |
|   // real-valued, because the matrix is symmetric.
 | |
|   Scalar c0 = m(0, 0) * m(1, 1) * m(2, 2) +
 | |
|               Scalar(2) * m(0, 1) * m(0, 2) * m(1, 2) -
 | |
|               m(0, 0) * m(1, 2) * m(1, 2) - m(1, 1) * m(0, 2) * m(0, 2) -
 | |
|               m(2, 2) * m(0, 1) * m(0, 1);
 | |
|   Scalar c1 = m(0, 0) * m(1, 1) - m(0, 1) * m(0, 1) + m(0, 0) * m(2, 2) -
 | |
|               m(0, 2) * m(0, 2) + m(1, 1) * m(2, 2) - m(1, 2) * m(1, 2);
 | |
|   Scalar c2 = m(0, 0) + m(1, 1) + m(2, 2);
 | |
| 
 | |
|   // Construct the parameters used in classifying the roots of the equation
 | |
|   // and in solving the equation for the roots in closed form.
 | |
|   Scalar c2_over_3 = c2 * s_inv3;
 | |
|   Scalar a_over_3 = (c1 - c2 * c2_over_3) * s_inv3;
 | |
|   if (a_over_3 > Scalar(0)) a_over_3 = Scalar(0);
 | |
| 
 | |
|   Scalar half_b =
 | |
|       Scalar(0.5) * (c0 + c2_over_3 * (Scalar(2) * c2_over_3 * c2_over_3 - c1));
 | |
| 
 | |
|   Scalar q = half_b * half_b + a_over_3 * a_over_3 * a_over_3;
 | |
|   if (q > Scalar(0)) q = Scalar(0);
 | |
| 
 | |
|   // Compute the eigenvalues by solving for the roots of the polynomial.
 | |
|   Scalar rho = std::sqrt(-a_over_3);
 | |
|   Scalar theta = std::atan2(std::sqrt(-q), half_b) * s_inv3;
 | |
|   Scalar cos_theta = std::cos(theta);
 | |
|   Scalar sin_theta = std::sin(theta);
 | |
|   roots(2) = c2_over_3 + Scalar(2) * rho * cos_theta;
 | |
|   roots(0) = c2_over_3 - rho * (cos_theta + s_sqrt3 * sin_theta);
 | |
|   roots(1) = c2_over_3 - rho * (cos_theta - s_sqrt3 * sin_theta);
 | |
| }
 | |
| 
 | |
| template <typename Matrix, typename Vector>
 | |
| void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals) {
 | |
|   typedef typename Matrix::Scalar Scalar;
 | |
|   // Scale the matrix so its entries are in [-1,1].  The scaling is applied
 | |
|   // only when at least one matrix entry has magnitude larger than 1.
 | |
| 
 | |
|   Scalar shift = mat.trace() / 3;
 | |
|   Matrix scaledMat = mat;
 | |
|   scaledMat.diagonal().array() -= shift;
 | |
|   Scalar scale =
 | |
|       scaledMat.cwiseAbs() /*.template triangularView<Lower>()*/.maxCoeff();
 | |
|   scale = std::max(scale, Scalar(1));
 | |
|   scaledMat /= scale;
 | |
| 
 | |
|   // Compute the eigenvalues
 | |
|   //   scaledMat.setZero();
 | |
|   computeRoots(scaledMat, evals);
 | |
| 
 | |
|   // compute the eigen vectors
 | |
|   // **here we assume 3 different eigenvalues**
 | |
| 
 | |
|   // "optimized version" which appears to be slower with gcc!
 | |
|   //     Vector base;
 | |
|   //     Scalar alpha, beta;
 | |
|   //     base <<   scaledMat(1,0) * scaledMat(2,1),
 | |
|   //               scaledMat(1,0) * scaledMat(2,0),
 | |
|   //              -scaledMat(1,0) * scaledMat(1,0);
 | |
|   //     for(int k=0; k<2; ++k)
 | |
|   //     {
 | |
|   //       alpha = scaledMat(0,0) - evals(k);
 | |
|   //       beta  = scaledMat(1,1) - evals(k);
 | |
|   //       evecs.col(k) = (base + Vector(-beta*scaledMat(2,0),
 | |
|   //       -alpha*scaledMat(2,1), alpha*beta)).normalized();
 | |
|   //     }
 | |
|   //     evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized();
 | |
| 
 | |
|   //   // naive version
 | |
|   //   Matrix tmp;
 | |
|   //   tmp = scaledMat;
 | |
|   //   tmp.diagonal().array() -= evals(0);
 | |
|   //   evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
 | |
|   //
 | |
|   //   tmp = scaledMat;
 | |
|   //   tmp.diagonal().array() -= evals(1);
 | |
|   //   evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
 | |
|   //
 | |
|   //   tmp = scaledMat;
 | |
|   //   tmp.diagonal().array() -= evals(2);
 | |
|   //   evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
 | |
| 
 | |
|   // a more stable version:
 | |
|   if ((evals(2) - evals(0)) <= Eigen::NumTraits<Scalar>::epsilon()) {
 | |
|     evecs.setIdentity();
 | |
|   } else {
 | |
|     Matrix tmp;
 | |
|     tmp = scaledMat;
 | |
|     tmp.diagonal().array() -= evals(2);
 | |
|     evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
 | |
| 
 | |
|     tmp = scaledMat;
 | |
|     tmp.diagonal().array() -= evals(1);
 | |
|     evecs.col(1) = tmp.row(0).cross(tmp.row(1));
 | |
|     Scalar n1 = evecs.col(1).norm();
 | |
|     if (n1 <= Eigen::NumTraits<Scalar>::epsilon())
 | |
|       evecs.col(1) = evecs.col(2).unitOrthogonal();
 | |
|     else
 | |
|       evecs.col(1) /= n1;
 | |
| 
 | |
|     // make sure that evecs[1] is orthogonal to evecs[2]
 | |
|     evecs.col(1) =
 | |
|         evecs.col(2).cross(evecs.col(1).cross(evecs.col(2))).normalized();
 | |
|     evecs.col(0) = evecs.col(2).cross(evecs.col(1));
 | |
|   }
 | |
| 
 | |
|   // Rescale back to the original size.
 | |
|   evals *= scale;
 | |
|   evals.array() += shift;
 | |
| }
 | |
| 
 | |
| int main() {
 | |
|   BenchTimer t;
 | |
|   int tries = 10;
 | |
|   int rep = 400000;
 | |
|   typedef Matrix3d Mat;
 | |
|   typedef Vector3d Vec;
 | |
|   Mat A = Mat::Random(3, 3);
 | |
|   A = A.adjoint() * A;
 | |
|   //   Mat Q = A.householderQr().householderQ();
 | |
|   //   A = Q * Vec(2.2424567,2.2424566,7.454353).asDiagonal() * Q.transpose();
 | |
| 
 | |
|   SelfAdjointEigenSolver<Mat> eig(A);
 | |
|   BENCH(t, tries, rep, eig.compute(A));
 | |
|   std::cout << "Eigen iterative:  " << t.best() << "s\n";
 | |
| 
 | |
|   BENCH(t, tries, rep, eig.computeDirect(A));
 | |
|   std::cout << "Eigen direct   :  " << t.best() << "s\n";
 | |
| 
 | |
|   Mat evecs;
 | |
|   Vec evals;
 | |
|   BENCH(t, tries, rep, eigen33(A, evecs, evals));
 | |
|   std::cout << "Direct: " << t.best() << "s\n\n";
 | |
| 
 | |
|   //   std::cerr << "Eigenvalue/eigenvector diffs:\n";
 | |
|   //   std::cerr << (evals - eig.eigenvalues()).transpose() << "\n";
 | |
|   //   for(int k=0;k<3;++k)
 | |
|   //     if(evecs.col(k).dot(eig.eigenvectors().col(k))<0)
 | |
|   //       evecs.col(k) = -evecs.col(k);
 | |
|   //   std::cerr << evecs - eig.eigenvectors() << "\n\n";
 | |
| }
 | 
