Files
FastDeploy/benchmark/benchmark_ppocr.py
WJJ1995 1860d3ab78 [Benchmark] Add PPOCR benchmark (#771)
* add onnx_ort_runtime demo

* rm in requirements

* support batch eval

* fixed MattingResults bug

* move assignment for DetectionResult

* integrated x2paddle

* add model convert readme

* update readme

* re-lint

* add processor api

* Add MattingResult Free

* change valid_cpu_backends order

* add ppocr benchmark

* mv bs from 64 to 32

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-12-05 10:06:41 +08:00

285 lines
11 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import numpy as np
import time
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_dir", required=True, help="Model dir of PPOCR.")
parser.add_argument(
"--det_model", required=True, help="Path of Detection model of PPOCR.")
parser.add_argument(
"--cls_model",
required=True,
help="Path of Classification model of PPOCR.")
parser.add_argument(
"--rec_model",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--rec_label_file",
required=True,
help="Path of Recognization model of PPOCR.")
parser.add_argument(
"--image", type=str, required=False, help="Path of test image file.")
parser.add_argument(
"--cpu_num_thread",
type=int,
default=8,
help="default number of cpu thread.")
parser.add_argument(
"--device_id", type=int, default=0, help="device(gpu) id")
parser.add_argument(
"--iter_num",
required=True,
type=int,
default=300,
help="number of iterations for computing performace.")
parser.add_argument(
"--device",
default="cpu",
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--backend",
type=str,
default="default",
help="inference backend, default, ort, ov, trt, paddle, paddle_trt.")
parser.add_argument(
"--enable_trt_fp16",
type=ast.literal_eval,
default=False,
help="whether enable fp16 in trt backend")
parser.add_argument(
"--enable_collect_memory_info",
type=ast.literal_eval,
default=False,
help="whether enable collect memory info")
args = parser.parse_args()
return args
def build_option(args):
option = fd.RuntimeOption()
device = args.device
backend = args.backend
enable_trt_fp16 = args.enable_trt_fp16
option.set_cpu_thread_num(args.cpu_num_thread)
if device == "gpu":
option.use_gpu()
if backend == "ort":
option.use_ort_backend()
elif backend == "paddle":
option.use_paddle_backend()
elif backend in ["trt", "paddle_trt"]:
option.use_trt_backend()
if backend == "paddle_trt":
option.enable_paddle_to_trt()
if enable_trt_fp16:
option.enable_trt_fp16()
elif backend == "default":
return option
else:
raise Exception(
"While inference with GPU, only support default/ort/paddle/trt/paddle_trt now, {} is not supported.".
format(backend))
elif device == "cpu":
if backend == "ort":
option.use_ort_backend()
elif backend == "ov":
option.use_openvino_backend()
elif backend == "paddle":
option.use_paddle_backend()
elif backend == "default":
return option
else:
raise Exception(
"While inference with CPU, only support default/ort/ov/paddle now, {} is not supported.".
format(backend))
else:
raise Exception(
"Only support device CPU/GPU now, {} is not supported.".format(
device))
return option
def get_current_memory_mb(gpu_id=None):
import pynvml
import psutil
pid = os.getpid()
p = psutil.Process(pid)
info = p.memory_full_info()
cpu_mem = info.uss / 1024. / 1024.
gpu_mem = 0
if gpu_id is not None:
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
gpu_mem = meminfo.used / 1024. / 1024.
return cpu_mem, gpu_mem
def get_current_gputil(gpu_id):
import GPUtil
GPUs = GPUtil.getGPUs()
gpu_load = GPUs[gpu_id].load
return gpu_load
if __name__ == '__main__':
args = parse_arguments()
option = build_option(args)
# Detection Model
det_model_file = os.path.join(args.model_dir, args.det_model,
"inference.pdmodel")
det_params_file = os.path.join(args.model_dir, args.det_model,
"inference.pdiparams")
# Classification Model
cls_model_file = os.path.join(args.model_dir, args.cls_model,
"inference.pdmodel")
cls_params_file = os.path.join(args.model_dir, args.cls_model,
"inference.pdiparams")
# Recognition Model
rec_model_file = os.path.join(args.model_dir, args.rec_model,
"inference.pdmodel")
rec_params_file = os.path.join(args.model_dir, args.rec_model,
"inference.pdiparams")
rec_label_file = os.path.join(args.model_dir, args.rec_label_file)
gpu_id = args.device_id
enable_collect_memory_info = args.enable_collect_memory_info
end2end_statis = list()
cpu_mem = list()
gpu_mem = list()
gpu_util = list()
if args.device == "cpu":
file_path = args.model_dir + "_model_" + args.backend + "_" + \
args.device + "_" + str(args.cpu_num_thread) + ".txt"
else:
if args.enable_trt_fp16:
file_path = args.model_dir + "_model_" + args.backend + "_fp16_" + args.device + ".txt"
else:
file_path = args.model_dir + "_model_" + args.backend + "_" + args.device + ".txt"
f = open(file_path, "w")
f.writelines("===={}====: \n".format(os.path.split(file_path)[-1][:-4]))
try:
rec_option = option
if "OCRv2" in args.model_dir:
det_option = option
if args.backend in ["trt", "paddle_trt"]:
det_option.set_trt_input_shape(
"x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960])
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
cls_option = option
if args.backend in ["trt", "paddle_trt"]:
cls_option.set_trt_input_shape(
"x", [1, 3, 48, 10], [10, 3, 48, 320], [64, 3, 48, 1024])
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option)
rec_option = option
if args.backend in ["trt", "paddle_trt"]:
rec_option.set_trt_input_shape(
"x", [1, 3, 32, 10], [10, 3, 32, 320], [32, 3, 32, 2304])
rec_model = fd.vision.ocr.Recognizer(
rec_model_file,
rec_params_file,
rec_label_file,
runtime_option=rec_option)
model = fd.vision.ocr.PPOCRv2(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
elif "OCRv3" in args.model_dir:
if args.backend in ["trt", "paddle_trt"]:
det_option.set_trt_input_shape(
"x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960])
det_model = fd.vision.ocr.DBDetector(
det_model_file, det_params_file, runtime_option=det_option)
if args.backend in ["trt", "paddle_trt"]:
cls_option.set_trt_input_shape(
"x", [1, 3, 48, 10], [10, 3, 48, 320], [64, 3, 48, 1024])
cls_model = fd.vision.ocr.Classifier(
cls_model_file, cls_params_file, runtime_option=cls_option)
if args.backend in ["trt", "paddle_trt"]:
rec_option.set_trt_input_shape(
"x", [1, 3, 48, 10], [10, 3, 48, 320], [64, 3, 48, 2304])
rec_model = fd.vision.ocr.Recognizer(
rec_model_file,
rec_params_file,
rec_label_file,
runtime_option=rec_option)
model = fd.vision.ocr.PPOCRv3(
det_model=det_model, cls_model=cls_model, rec_model=rec_model)
else:
raise Exception("model {} not support now in ppocr series".format(
args.model_dir))
det_model.enable_record_time_of_runtime()
cls_model.enable_record_time_of_runtime()
rec_model.enable_record_time_of_runtime()
im_ori = cv2.imread(args.image)
for i in range(args.iter_num):
im = im_ori
start = time.time()
result = model.predict(im)
end2end_statis.append(time.time() - start)
if enable_collect_memory_info:
gpu_util.append(get_current_gputil(gpu_id))
cm, gm = get_current_memory_mb(gpu_id)
cpu_mem.append(cm)
gpu_mem.append(gm)
runtime_statis_det = det_model.print_statis_info_of_runtime()
runtime_statis_cls = cls_model.print_statis_info_of_runtime()
runtime_statis_rec = rec_model.print_statis_info_of_runtime()
warmup_iter = args.iter_num // 5
end2end_statis_repeat = end2end_statis[warmup_iter:]
if enable_collect_memory_info:
cpu_mem_repeat = cpu_mem[warmup_iter:]
gpu_mem_repeat = gpu_mem[warmup_iter:]
gpu_util_repeat = gpu_util[warmup_iter:]
dump_result = dict()
dump_result["runtime"] = (
runtime_statis_det["avg_time"] + runtime_statis_cls["avg_time"] +
runtime_statis_rec["avg_time"]) * 1000
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
if enable_collect_memory_info:
dump_result["cpu_rss_mb"] = np.mean(cpu_mem_repeat)
dump_result["gpu_rss_mb"] = np.mean(gpu_mem_repeat)
dump_result["gpu_util"] = np.mean(gpu_util_repeat)
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
if enable_collect_memory_info:
f.writelines("cpu_rss_mb: {} \n".format(
str(dump_result["cpu_rss_mb"])))
f.writelines("gpu_rss_mb: {} \n".format(
str(dump_result["gpu_rss_mb"])))
f.writelines("gpu_util: {} \n".format(
str(dump_result["gpu_util"])))
except:
f.writelines("!!!!!Infer Failed\n")
f.close()