mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			290 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			290 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // This file is part of Eigen, a lightweight C++ template library
 | |
| // for linear algebra.
 | |
| //
 | |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
 | |
| //
 | |
| // This Source Code Form is subject to the terms of the Mozilla
 | |
| // Public License v. 2.0. If a copy of the MPL was not distributed
 | |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | |
| 
 | |
| #define TEST_ENABLE_TEMPORARY_TRACKING
 | |
| 
 | |
| #include "main.h"
 | |
| 
 | |
| template <typename Dst, typename Lhs, typename Rhs>
 | |
| void check_scalar_multiple3(Dst& dst, const Lhs& A, const Rhs& B) {
 | |
|   VERIFY_EVALUATION_COUNT((dst.noalias() = A * B), 0);
 | |
|   VERIFY_IS_APPROX(dst, (A.eval() * B.eval()).eval());
 | |
|   VERIFY_EVALUATION_COUNT((dst.noalias() += A * B), 0);
 | |
|   VERIFY_IS_APPROX(dst, 2 * (A.eval() * B.eval()).eval());
 | |
|   VERIFY_EVALUATION_COUNT((dst.noalias() -= A * B), 0);
 | |
|   VERIFY_IS_APPROX(dst, (A.eval() * B.eval()).eval());
 | |
| }
 | |
| 
 | |
| template <typename Dst, typename Lhs, typename Rhs, typename S2>
 | |
| void check_scalar_multiple2(Dst& dst, const Lhs& A, const Rhs& B, S2 s2) {
 | |
|   CALL_SUBTEST(check_scalar_multiple3(dst, A, B));
 | |
|   CALL_SUBTEST(check_scalar_multiple3(dst, A, -B));
 | |
|   CALL_SUBTEST(check_scalar_multiple3(dst, A, s2 * B));
 | |
|   CALL_SUBTEST(check_scalar_multiple3(dst, A, B * s2));
 | |
|   CALL_SUBTEST(check_scalar_multiple3(dst, A, (B * s2).conjugate()));
 | |
| }
 | |
| 
 | |
| template <typename Dst, typename Lhs, typename Rhs, typename S1, typename S2>
 | |
| void check_scalar_multiple1(Dst& dst, const Lhs& A, const Rhs& B, S1 s1,
 | |
|                             S2 s2) {
 | |
|   CALL_SUBTEST(check_scalar_multiple2(dst, A, B, s2));
 | |
|   CALL_SUBTEST(check_scalar_multiple2(dst, -A, B, s2));
 | |
|   CALL_SUBTEST(check_scalar_multiple2(dst, s1 * A, B, s2));
 | |
|   CALL_SUBTEST(check_scalar_multiple2(dst, A * s1, B, s2));
 | |
|   CALL_SUBTEST(check_scalar_multiple2(dst, (A * s1).conjugate(), B, s2));
 | |
| }
 | |
| 
 | |
| template <typename MatrixType>
 | |
| void product_notemporary(const MatrixType& m) {
 | |
|   /* This test checks the number of temporaries created
 | |
|    * during the evaluation of a complex expression */
 | |
|   typedef typename MatrixType::Scalar Scalar;
 | |
|   typedef typename MatrixType::RealScalar RealScalar;
 | |
|   typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
 | |
|   typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
 | |
|   typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> ColMajorMatrixType;
 | |
|   typedef Matrix<Scalar, Dynamic, Dynamic, RowMajor> RowMajorMatrixType;
 | |
| 
 | |
|   Index rows = m.rows();
 | |
|   Index cols = m.cols();
 | |
| 
 | |
|   ColMajorMatrixType m1 = MatrixType::Random(rows, cols),
 | |
|                      m2 = MatrixType::Random(rows, cols), m3(rows, cols);
 | |
|   RowVectorType rv1 = RowVectorType::Random(rows), rvres(rows);
 | |
|   ColVectorType cv1 = ColVectorType::Random(cols), cvres(cols);
 | |
|   RowMajorMatrixType rm3(rows, cols);
 | |
| 
 | |
|   Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(),
 | |
|          s3 = internal::random<Scalar>();
 | |
| 
 | |
|   Index c0 = internal::random<Index>(4, cols - 8),
 | |
|         c1 = internal::random<Index>(8, cols - c0),
 | |
|         r0 = internal::random<Index>(4, cols - 8),
 | |
|         r1 = internal::random<Index>(8, rows - r0);
 | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(m3 = (m1 * m2.adjoint()), 1);
 | |
|   VERIFY_EVALUATION_COUNT(m3 = (m1 * m2.adjoint()).transpose(), 1);
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() = m1 * m2.adjoint(), 0);
 | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(m3 = s1 * (m1 * m2.transpose()), 1);
 | |
|   //   VERIFY_EVALUATION_COUNT( m3 = m3 + s1 * (m1 * m2.transpose()), 1);
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() = s1 * (m1 * m2.transpose()), 0);
 | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(m3 = m3 + (m1 * m2.adjoint()), 1);
 | |
|   VERIFY_EVALUATION_COUNT(m3 = m3 - (m1 * m2.adjoint()), 1);
 | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(m3 = m3 + (m1 * m2.adjoint()).transpose(), 1);
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() = m3 + m1 * m2.transpose(), 0);
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() += m3 + m1 * m2.transpose(), 0);
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() -= m3 + m1 * m2.transpose(), 0);
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() = m3 - m1 * m2.transpose(), 0);
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() += m3 - m1 * m2.transpose(), 0);
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() -= m3 - m1 * m2.transpose(), 0);
 | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() = s1 * m1 * s2 * m2.adjoint(), 0);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.noalias() = s1 * m1 * s2 * (m1 * s3 + m2 * s2).adjoint(), 1);
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() = (s1 * m1).adjoint() * s2 * m2, 0);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.noalias() += s1 * (-m1 * s3).adjoint() * (s2 * m2 * s3), 0);
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() -= s1 * (m1.transpose() * m2), 0);
 | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       (m3.block(r0, r0, r1, r1).noalias() +=
 | |
|        -m1.block(r0, c0, r1, c1) * (s2 * m2.block(r0, c0, r1, c1)).adjoint()),
 | |
|       0);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       (m3.block(r0, r0, r1, r1).noalias() -=
 | |
|        s1 * m1.block(r0, c0, r1, c1) * m2.block(c0, r0, c1, r1)),
 | |
|       0);
 | |
| 
 | |
|   // NOTE this is because the Block expression is not handled yet by our
 | |
|   // expression analyser
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       (m3.block(r0, r0, r1, r1).noalias() =
 | |
|            s1 * m1.block(r0, c0, r1, c1) * (s1 * m2).block(c0, r0, c1, r1)),
 | |
|       1);
 | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.noalias() -= (s1 * m1).template triangularView<Lower>() * m2, 0);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       rm3.noalias() =
 | |
|           (s1 * m1.adjoint()).template triangularView<Upper>() * (m2 + m2),
 | |
|       1);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       rm3.noalias() = (s1 * m1.adjoint()).template triangularView<UnitUpper>() *
 | |
|                       m2.adjoint(),
 | |
|       0);
 | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.template triangularView<Upper>() = (m1 * m2.adjoint()), 0);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.template triangularView<Upper>() -= (m1 * m2.adjoint()), 0);
 | |
| 
 | |
|   // NOTE this is because the blas_traits require innerstride==1 to avoid a
 | |
|   // temporary, but that doesn't seem to be actually needed for the triangular
 | |
|   // products
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       rm3.col(c0).noalias() =
 | |
|           (s1 * m1.adjoint()).template triangularView<UnitUpper>() *
 | |
|           (s2 * m2.row(c0)).adjoint(),
 | |
|       1);
 | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(m1.template triangularView<Lower>().solveInPlace(m3),
 | |
|                           0);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m1.adjoint().template triangularView<Lower>().solveInPlace(
 | |
|           m3.transpose()),
 | |
|       0);
 | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.noalias() -= (s1 * m1).adjoint().template selfadjointView<Lower>() *
 | |
|                       (-m2 * s3).adjoint(),
 | |
|       0);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.noalias() = s2 * m2.adjoint() *
 | |
|                      (s1 * m1.adjoint()).template selfadjointView<Upper>(),
 | |
|       0);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       rm3.noalias() =
 | |
|           (s1 * m1.adjoint()).template selfadjointView<Lower>() * m2.adjoint(),
 | |
|       0);
 | |
| 
 | |
|   // NOTE this is because the blas_traits require innerstride==1 to avoid a
 | |
|   // temporary, but that doesn't seem to be actually needed for the triangular
 | |
|   // products
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.col(c0).noalias() =
 | |
|           (s1 * m1).adjoint().template selfadjointView<Lower>() *
 | |
|           (-m2.row(c0) * s3).adjoint(),
 | |
|       1);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.col(c0).noalias() -=
 | |
|       (s1 * m1).adjoint().template selfadjointView<Upper>() *
 | |
|       (-m2.row(c0) * s3).adjoint(),
 | |
|       1);
 | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.block(r0, c0, r1, c1).noalias() +=
 | |
|       m1.block(r0, r0, r1, r1).template selfadjointView<Upper>() *
 | |
|       (s1 * m2.block(r0, c0, r1, c1)),
 | |
|       0);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.block(r0, c0, r1, c1).noalias() =
 | |
|           m1.block(r0, r0, r1, r1).template selfadjointView<Upper>() *
 | |
|           m2.block(r0, c0, r1, c1),
 | |
|       0);
 | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.template selfadjointView<Lower>().rankUpdate(m2.adjoint()), 0);
 | |
| 
 | |
|   // Here we will get 1 temporary for each resize operation of the lhs operator;
 | |
|   // resize(r1,c1) would lead to zero temporaries
 | |
|   m3.resize(1, 1);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.noalias() =
 | |
|           m1.block(r0, r0, r1, r1).template selfadjointView<Lower>() *
 | |
|           m2.block(r0, c0, r1, c1),
 | |
|       1);
 | |
|   m3.resize(1, 1);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.noalias() =
 | |
|           m1.block(r0, r0, r1, r1).template triangularView<UnitUpper>() *
 | |
|           m2.block(r0, c0, r1, c1),
 | |
|       1);
 | |
| 
 | |
|   // Zero temporaries for lazy products ...
 | |
|   m3.setRandom(rows, cols);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       Scalar tmp = 0; tmp += Scalar(RealScalar(1)) /
 | |
|                              (m3.transpose().lazyProduct(m3)).diagonal().sum(),
 | |
|                       0);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.noalias() = m1.conjugate().lazyProduct(m2.conjugate()), 0);
 | |
| 
 | |
|   // ... and even no temporary for even deeply (>=2) nested products
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       Scalar tmp = 0;
 | |
|       tmp += Scalar(RealScalar(1)) / (m3.transpose() * m3).diagonal().sum(), 0);
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       Scalar tmp = 0;
 | |
|       tmp += Scalar(RealScalar(1)) /
 | |
|              (m3.transpose() * m3).diagonal().array().abs().sum(),
 | |
|       0);
 | |
| 
 | |
|   // Zero temporaries for ... CoeffBasedProductMode
 | |
|   VERIFY_EVALUATION_COUNT(
 | |
|       m3.col(0).template head<5>() * m3.col(0).transpose() +
 | |
|           m3.col(0).template head<5>() * m3.col(0).transpose(),
 | |
|       0);
 | |
| 
 | |
|   // Check matrix * vectors
 | |
|   VERIFY_EVALUATION_COUNT(cvres.noalias() = m1 * cv1, 0);
 | |
|   VERIFY_EVALUATION_COUNT(cvres.noalias() -= m1 * cv1, 0);
 | |
|   VERIFY_EVALUATION_COUNT(cvres.noalias() -= m1 * m2.col(0), 0);
 | |
|   VERIFY_EVALUATION_COUNT(cvres.noalias() -= m1 * rv1.adjoint(), 0);
 | |
|   VERIFY_EVALUATION_COUNT(cvres.noalias() -= m1 * m2.row(0).transpose(), 0);
 | |
| 
 | |
|   VERIFY_EVALUATION_COUNT(cvres.noalias() = (m1 + m1) * cv1, 0);
 | |
|   VERIFY_EVALUATION_COUNT(cvres.noalias() = (rm3 + rm3) * cv1, 0);
 | |
|   VERIFY_EVALUATION_COUNT(cvres.noalias() = (m1 + m1) * (m1 * cv1), 1);
 | |
|   VERIFY_EVALUATION_COUNT(cvres.noalias() = (rm3 + rm3) * (m1 * cv1), 1);
 | |
| 
 | |
| // Check outer products
 | |
| #ifdef EIGEN_ALLOCA
 | |
|   bool temp_via_alloca =
 | |
|       m3.rows() * sizeof(Scalar) <= EIGEN_STACK_ALLOCATION_LIMIT;
 | |
| #else
 | |
|   bool temp_via_alloca = false;
 | |
| #endif
 | |
|   m3 = cv1 * rv1;
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() = cv1 * rv1, 0);
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() = (cv1 + cv1) * (rv1 + rv1),
 | |
|                           temp_via_alloca ? 0 : 1);
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() = (m1 * cv1) * (rv1), 1);
 | |
|   VERIFY_EVALUATION_COUNT(m3.noalias() += (m1 * cv1) * (rv1), 1);
 | |
|   rm3 = cv1 * rv1;
 | |
|   VERIFY_EVALUATION_COUNT(rm3.noalias() = cv1 * rv1, 0);
 | |
|   VERIFY_EVALUATION_COUNT(rm3.noalias() = (cv1 + cv1) * (rv1 + rv1),
 | |
|                           temp_via_alloca ? 0 : 1);
 | |
|   VERIFY_EVALUATION_COUNT(rm3.noalias() = (cv1) * (rv1 * m1), 1);
 | |
|   VERIFY_EVALUATION_COUNT(rm3.noalias() -= (cv1) * (rv1 * m1), 1);
 | |
|   VERIFY_EVALUATION_COUNT(rm3.noalias() = (m1 * cv1) * (rv1 * m1), 2);
 | |
|   VERIFY_EVALUATION_COUNT(rm3.noalias() += (m1 * cv1) * (rv1 * m1), 2);
 | |
| 
 | |
|   // Check nested products
 | |
|   VERIFY_EVALUATION_COUNT(cvres.noalias() = m1.adjoint() * m1 * cv1, 1);
 | |
|   VERIFY_EVALUATION_COUNT(rvres.noalias() = rv1 * (m1 * m2.adjoint()), 1);
 | |
| 
 | |
|   // exhaustively check all scalar multiple combinations:
 | |
|   {
 | |
|     // Generic path:
 | |
|     check_scalar_multiple1(m3, m1, m2, s1, s2);
 | |
|     // Force fall back to coeff-based:
 | |
|     typename ColMajorMatrixType::BlockXpr m3_blck = m3.block(r0, r0, 1, 1);
 | |
|     check_scalar_multiple1(m3_blck, m1.block(r0, c0, 1, 1),
 | |
|                            m2.block(c0, r0, 1, 1), s1, s2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| EIGEN_DECLARE_TEST(product_notemporary) {
 | |
|   int s;
 | |
|   for (int i = 0; i < g_repeat; i++) {
 | |
|     s = internal::random<int>(16, EIGEN_TEST_MAX_SIZE);
 | |
|     CALL_SUBTEST_1(product_notemporary(MatrixXf(s, s)));
 | |
|     CALL_SUBTEST_2(product_notemporary(MatrixXd(s, s)));
 | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s)
 | |
| 
 | |
|     s = internal::random<int>(16, EIGEN_TEST_MAX_SIZE / 2);
 | |
|     CALL_SUBTEST_3(product_notemporary(MatrixXcf(s, s)));
 | |
|     CALL_SUBTEST_4(product_notemporary(MatrixXcd(s, s)));
 | |
|     TEST_SET_BUT_UNUSED_VARIABLE(s)
 | |
|   }
 | |
| }
 | 
