mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00
96 lines
3.6 KiB
Python
96 lines
3.6 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
|
|
import logging
|
|
from ... import RuntimeOption, FastDeployModel, ModelFormat
|
|
from ... import c_lib_wrap as C
|
|
|
|
|
|
class SchemaLanguage(object):
|
|
ZH = 0
|
|
EN = 1
|
|
|
|
|
|
class SchemaNode(object):
|
|
def __init__(self, name, children=[]):
|
|
schema_node_children = []
|
|
if isinstance(children, str):
|
|
children = [children]
|
|
for child in children:
|
|
if isinstance(child, str):
|
|
schema_node_children += [C.text.SchemaNode(child, [])]
|
|
elif isinstance(child, dict):
|
|
for key, val in child.items():
|
|
schema_node_child = SchemaNode(key, val)
|
|
schema_node_children += [schema_node_child._schema_node]
|
|
else:
|
|
assert "The type of child of SchemaNode should be str or dict."
|
|
self._schema_node = C.text.SchemaNode(name, schema_node_children)
|
|
self._schema_node_children = schema_node_children
|
|
|
|
|
|
class UIEModel(FastDeployModel):
|
|
def __init__(self,
|
|
model_file,
|
|
params_file,
|
|
vocab_file,
|
|
position_prob=0.5,
|
|
max_length=128,
|
|
schema=[],
|
|
batch_size=64,
|
|
runtime_option=RuntimeOption(),
|
|
model_format=ModelFormat.PADDLE,
|
|
schema_language=SchemaLanguage.ZH):
|
|
if isinstance(schema, list):
|
|
schema = SchemaNode("", schema)._schema_node_children
|
|
elif isinstance(schema, dict):
|
|
schema_tmp = []
|
|
for key, val in schema.items():
|
|
schema_tmp += [SchemaNode(key, val)._schema_node]
|
|
schema = schema_tmp
|
|
else:
|
|
assert "The type of schema should be list or dict."
|
|
schema_language = C.text.SchemaLanguage(schema_language)
|
|
self._model = C.text.UIEModel(model_file, params_file, vocab_file,
|
|
position_prob, max_length, schema,
|
|
batch_size, runtime_option._option,
|
|
model_format, schema_language)
|
|
assert self.initialized, "UIEModel initialize failed."
|
|
|
|
def set_schema(self, schema):
|
|
if isinstance(schema, list):
|
|
schema = SchemaNode("", schema)._schema_node_children
|
|
elif isinstance(schema, dict):
|
|
schema_tmp = []
|
|
for key, val in schema.items():
|
|
schema_tmp += [SchemaNode(key, val)._schema_node]
|
|
schema = schema_tmp
|
|
self._model.set_schema(schema)
|
|
|
|
def predict(self, texts, return_dict=False):
|
|
results = self._model.predict(texts)
|
|
if not return_dict:
|
|
return results
|
|
new_results = []
|
|
for result in results:
|
|
uie_result = dict()
|
|
for key, uie_results in result.items():
|
|
uie_result[key] = list()
|
|
for uie_res in uie_results:
|
|
uie_result[key].append(uie_res.get_dict())
|
|
new_results += [uie_result]
|
|
return new_results
|