mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
123 lines
5.0 KiB
C++
123 lines
5.0 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/facedet/contrib/yolov7face/postprocessor.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
namespace vision {
|
|
|
|
namespace facedet {
|
|
|
|
Yolov7FacePostprocessor::Yolov7FacePostprocessor() {
|
|
conf_threshold_ = 0.5;
|
|
nms_threshold_ = 0.45;
|
|
landmarks_per_face_ = 5;
|
|
}
|
|
|
|
bool Yolov7FacePostprocessor::Run(const std::vector<FDTensor>& infer_result,
|
|
std::vector<FaceDetectionResult>* results,
|
|
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
|
|
int batch = infer_result[0].shape[0];
|
|
|
|
results->resize(batch);
|
|
|
|
for (size_t bs = 0; bs < batch; ++bs) {
|
|
(*results)[bs].Clear();
|
|
// must be setup landmarks_per_face before reserve
|
|
(*results)[bs].landmarks_per_face = landmarks_per_face_;
|
|
(*results)[bs].Reserve(infer_result[0].shape[1]);
|
|
if (infer_result[0].dtype != FDDataType::FP32) {
|
|
FDERROR << "Only support post process with float32 data." << std::endl;
|
|
return false;
|
|
}
|
|
const float* data = reinterpret_cast<const float*>(infer_result[0].Data()) + bs * infer_result[0].shape[1] * infer_result[0].shape[2];
|
|
for (size_t i = 0; i < infer_result[0].shape[1]; ++i) {
|
|
int s = i * infer_result[0].shape[2];
|
|
float confidence = data[s + 4];
|
|
const float* reg_cls_ptr = data + s;
|
|
const float* class_score = data + s + 5;
|
|
confidence *= (*class_score);
|
|
// filter boxes by conf_threshold
|
|
if (confidence <= conf_threshold_) {
|
|
continue;
|
|
}
|
|
float x = reg_cls_ptr[0];
|
|
float y = reg_cls_ptr[1];
|
|
float w = reg_cls_ptr[2];
|
|
float h = reg_cls_ptr[3];
|
|
|
|
// convert from [x, y, w, h] to [x1, y1, x2, y2]
|
|
(*results)[bs].boxes.emplace_back(std::array<float, 4>{
|
|
(x - w / 2.f), (y - h / 2.f), (x + w / 2.f), (y + h / 2.f)});
|
|
(*results)[bs].scores.push_back(confidence);
|
|
|
|
// decode landmarks (default 5 landmarks)
|
|
if (landmarks_per_face_ > 0) {
|
|
float* landmarks_ptr = const_cast<float*>(reg_cls_ptr + 6);
|
|
for (size_t j = 0; j < landmarks_per_face_ * 3; j += 3) {
|
|
(*results)[bs].landmarks.emplace_back(
|
|
std::array<float, 2>{landmarks_ptr[j], landmarks_ptr[j + 1]});
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((*results)[bs].boxes.size() == 0) {
|
|
return true;
|
|
}
|
|
|
|
utils::NMS(&((*results)[bs]), nms_threshold_);
|
|
|
|
// scale the boxes to the origin image shape
|
|
auto iter_out = ims_info[bs].find("output_shape");
|
|
auto iter_ipt = ims_info[bs].find("input_shape");
|
|
FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
|
|
"Cannot find input_shape or output_shape from im_info.");
|
|
float out_h = iter_out->second[0];
|
|
float out_w = iter_out->second[1];
|
|
float ipt_h = iter_ipt->second[0];
|
|
float ipt_w = iter_ipt->second[1];
|
|
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
|
|
float pad_h = (out_h - ipt_h * scale) / 2;
|
|
float pad_w = (out_w - ipt_w * scale) / 2;
|
|
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
|
|
// clip box
|
|
(*results)[bs].boxes[i][0] = std::max(((*results)[bs].boxes[i][0] - pad_w) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][1] = std::max(((*results)[bs].boxes[i][1] - pad_h) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][2] = std::max(((*results)[bs].boxes[i][2] - pad_w) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][3] = std::max(((*results)[bs].boxes[i][3] - pad_h) / scale, 0.0f);
|
|
(*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w - 1.0f);
|
|
(*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h - 1.0f);
|
|
(*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w - 1.0f);
|
|
(*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h - 1.0f);
|
|
}
|
|
|
|
// scale and clip landmarks
|
|
for (size_t i = 0; i < (*results)[bs].landmarks.size(); ++i) {
|
|
(*results)[bs].landmarks[i][0] =
|
|
std::max(((*results)[bs].landmarks[i][0] - pad_w) / scale, 0.0f);
|
|
(*results)[bs].landmarks[i][1] =
|
|
std::max(((*results)[bs].landmarks[i][1] - pad_h) / scale, 0.0f);
|
|
(*results)[bs].landmarks[i][0] = std::min((*results)[bs].landmarks[i][0], ipt_w - 1.0f);
|
|
(*results)[bs].landmarks[i][1] = std::min((*results)[bs].landmarks[i][1], ipt_h - 1.0f);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace detection
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|