mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* 对RKNPU2后端进行修改,当模型为非量化模型时,不在NPU执行normalize操作,当模型为量化模型时,在NUP上执行normalize操作 * 更新RKNPU2框架,输出数据的数据类型统一返回fp32类型 * 更新scrfd,拆分disable_normalize和disable_permute * 更新scrfd代码,支持量化 * 更新scrfd python example代码 * 更新模型转换代码,支持量化模型 * 更新文档 * 按照要求修改 * 按照要求修改 * 修正模型转换文档 * 更新一下转换脚本
134 lines
5.0 KiB
C++
134 lines
5.0 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include <unordered_map>
|
|
#include "fastdeploy/fastdeploy_model.h"
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
namespace vision {
|
|
|
|
namespace facedet {
|
|
/*! @brief SCRFD model object used when to load a SCRFD model exported by SCRFD.
|
|
*/
|
|
class FASTDEPLOY_DECL SCRFD : public FastDeployModel {
|
|
public:
|
|
/** \brief Set path of model file and the configuration of runtime.
|
|
*
|
|
* \param[in] model_file Path of model file, e.g ./scrfd.onnx
|
|
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
|
|
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
|
|
* \param[in] model_format Model format of the loaded model, default is ONNX format
|
|
*/
|
|
SCRFD(const std::string& model_file, const std::string& params_file = "",
|
|
const RuntimeOption& custom_option = RuntimeOption(),
|
|
const ModelFormat& model_format = ModelFormat::ONNX);
|
|
|
|
std::string ModelName() const { return "scrfd"; }
|
|
/** \brief Predict the face detection result for an input image
|
|
*
|
|
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
|
|
* \param[in] result The output face detection result will be writen to this structure
|
|
* \param[in] conf_threshold confidence threashold for postprocessing, default is 0.25
|
|
* \param[in] nms_iou_threshold iou threashold for NMS, default is 0.4
|
|
* \return true if the prediction successed, otherwise false
|
|
*/
|
|
virtual bool Predict(cv::Mat* im, FaceDetectionResult* result,
|
|
float conf_threshold = 0.25f,
|
|
float nms_iou_threshold = 0.4f);
|
|
|
|
/*! @brief
|
|
Argument for image preprocessing step, tuple of (width, height), decide the target size after resize, default (640, 640)
|
|
*/
|
|
std::vector<int> size;
|
|
// padding value, size should be the same as channels
|
|
|
|
std::vector<float> padding_value;
|
|
// only pad to the minimum rectange which height and width is times of stride
|
|
bool is_mini_pad;
|
|
// while is_mini_pad = false and is_no_pad = true,
|
|
// will resize the image to the set size
|
|
bool is_no_pad;
|
|
// if is_scale_up is false, the input image only can be zoom out,
|
|
// the maximum resize scale cannot exceed 1.0
|
|
bool is_scale_up;
|
|
// padding stride, for is_mini_pad
|
|
int stride;
|
|
/*! @brief
|
|
Argument for image postprocessing step, downsample strides (namely, steps) for SCRFD to generate anchors, will take (8,16,32) as default values
|
|
*/
|
|
std::vector<int> downsample_strides;
|
|
/*! @brief
|
|
Argument for image postprocessing step, landmarks_per_face, default 5 in SCRFD
|
|
*/
|
|
int landmarks_per_face;
|
|
/*! @brief
|
|
Argument for image postprocessing step, the outputs of onnx file with key points features or not, default true
|
|
*/
|
|
bool use_kps;
|
|
/*! @brief
|
|
Argument for image postprocessing step, the upperbond number of boxes processed by nms, default 30000
|
|
*/
|
|
int max_nms;
|
|
/*! @brief
|
|
Argument for image postprocessing step, anchor number of each stride, default 2
|
|
*/
|
|
unsigned int num_anchors;
|
|
|
|
/// This function will disable normalize and hwc2chw in preprocessing step.
|
|
void DisableNormalize();
|
|
|
|
/// This function will disable hwc2chw in preprocessing step.
|
|
void DisablePermute();
|
|
private:
|
|
bool Initialize();
|
|
|
|
bool Preprocess(Mat* mat, FDTensor* output,
|
|
std::map<std::string, std::array<float, 2>>* im_info);
|
|
|
|
bool Postprocess(std::vector<FDTensor>& infer_result,
|
|
FaceDetectionResult* result,
|
|
const std::map<std::string, std::array<float, 2>>& im_info,
|
|
float conf_threshold, float nms_iou_threshold);
|
|
|
|
void GeneratePoints();
|
|
|
|
void LetterBox(Mat* mat, const std::vector<int>& size,
|
|
const std::vector<float>& color, bool _auto,
|
|
bool scale_fill = false, bool scale_up = true,
|
|
int stride = 32);
|
|
|
|
bool is_dynamic_input_;
|
|
|
|
bool center_points_is_update_;
|
|
|
|
typedef struct {
|
|
float cx;
|
|
float cy;
|
|
} SCRFDPoint;
|
|
|
|
std::unordered_map<int, std::vector<SCRFDPoint>> center_points_;
|
|
|
|
// for recording the switch of normalize
|
|
bool disable_normalize_ = false;
|
|
// for recording the switch of hwc2chw
|
|
bool disable_permute_ = false;
|
|
};
|
|
} // namespace facedet
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|