Files
FastDeploy/fastdeploy/vision/facedet/contrib/scrfd.h
Zheng_Bicheng dc13eb7049 [RKNPU2] Update quantitative model (#879)
* 对RKNPU2后端进行修改,当模型为非量化模型时,不在NPU执行normalize操作,当模型为量化模型时,在NUP上执行normalize操作

* 更新RKNPU2框架,输出数据的数据类型统一返回fp32类型

* 更新scrfd,拆分disable_normalize和disable_permute

* 更新scrfd代码,支持量化

* 更新scrfd python example代码

* 更新模型转换代码,支持量化模型

* 更新文档

* 按照要求修改

* 按照要求修改

* 修正模型转换文档

* 更新一下转换脚本
2022-12-19 13:58:43 +08:00

134 lines
5.0 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <unordered_map>
#include "fastdeploy/fastdeploy_model.h"
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace facedet {
/*! @brief SCRFD model object used when to load a SCRFD model exported by SCRFD.
*/
class FASTDEPLOY_DECL SCRFD : public FastDeployModel {
public:
/** \brief Set path of model file and the configuration of runtime.
*
* \param[in] model_file Path of model file, e.g ./scrfd.onnx
* \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
* \param[in] custom_option RuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
* \param[in] model_format Model format of the loaded model, default is ONNX format
*/
SCRFD(const std::string& model_file, const std::string& params_file = "",
const RuntimeOption& custom_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX);
std::string ModelName() const { return "scrfd"; }
/** \brief Predict the face detection result for an input image
*
* \param[in] im The input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
* \param[in] result The output face detection result will be writen to this structure
* \param[in] conf_threshold confidence threashold for postprocessing, default is 0.25
* \param[in] nms_iou_threshold iou threashold for NMS, default is 0.4
* \return true if the prediction successed, otherwise false
*/
virtual bool Predict(cv::Mat* im, FaceDetectionResult* result,
float conf_threshold = 0.25f,
float nms_iou_threshold = 0.4f);
/*! @brief
Argument for image preprocessing step, tuple of (width, height), decide the target size after resize, default (640, 640)
*/
std::vector<int> size;
// padding value, size should be the same as channels
std::vector<float> padding_value;
// only pad to the minimum rectange which height and width is times of stride
bool is_mini_pad;
// while is_mini_pad = false and is_no_pad = true,
// will resize the image to the set size
bool is_no_pad;
// if is_scale_up is false, the input image only can be zoom out,
// the maximum resize scale cannot exceed 1.0
bool is_scale_up;
// padding stride, for is_mini_pad
int stride;
/*! @brief
Argument for image postprocessing step, downsample strides (namely, steps) for SCRFD to generate anchors, will take (8,16,32) as default values
*/
std::vector<int> downsample_strides;
/*! @brief
Argument for image postprocessing step, landmarks_per_face, default 5 in SCRFD
*/
int landmarks_per_face;
/*! @brief
Argument for image postprocessing step, the outputs of onnx file with key points features or not, default true
*/
bool use_kps;
/*! @brief
Argument for image postprocessing step, the upperbond number of boxes processed by nms, default 30000
*/
int max_nms;
/*! @brief
Argument for image postprocessing step, anchor number of each stride, default 2
*/
unsigned int num_anchors;
/// This function will disable normalize and hwc2chw in preprocessing step.
void DisableNormalize();
/// This function will disable hwc2chw in preprocessing step.
void DisablePermute();
private:
bool Initialize();
bool Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info);
bool Postprocess(std::vector<FDTensor>& infer_result,
FaceDetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold);
void GeneratePoints();
void LetterBox(Mat* mat, const std::vector<int>& size,
const std::vector<float>& color, bool _auto,
bool scale_fill = false, bool scale_up = true,
int stride = 32);
bool is_dynamic_input_;
bool center_points_is_update_;
typedef struct {
float cx;
float cy;
} SCRFDPoint;
std::unordered_map<int, std::vector<SCRFDPoint>> center_points_;
// for recording the switch of normalize
bool disable_normalize_ = false;
// for recording the switch of hwc2chw
bool disable_permute_ = false;
};
} // namespace facedet
} // namespace vision
} // namespace fastdeploy