Files
FastDeploy/fastdeploy/vision/detection/ppdet/postprocessor.h
Zheng-Bicheng 23dfcac891 [Model] Add DecodeProcess For PPDet (#1127)
* 更新ppdet

* 更新ppdet

* 更新ppdet

* 更新ppdet

* 更新ppdet

* 新增ppdet_decode

* 更新多batch支持

* 更新多batch支持

* 更新多batch支持

* 更新注释内容

* 尝试解决pybind问题

* 尝试解决pybind的问题

* 尝试解决pybind的问题

* 重构代码

* 重构代码

* 重构代码

* 按照要求修改

* 修复部分bug
加入pybind

* 修复pybind

* 修复pybind错误的问题
2023-01-16 18:42:41 +08:00

76 lines
2.9 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
#include "fastdeploy/vision/detection/ppdet/multiclass_nms.h"
#include "fastdeploy/vision/detection/ppdet/ppdet_decode.h"
namespace fastdeploy {
namespace vision {
namespace detection {
/*! @brief Postprocessor object for PaddleDet serials model.
*/
class FASTDEPLOY_DECL PaddleDetPostprocessor {
public:
PaddleDetPostprocessor() = default;
/** \brief Create a preprocessor instance for PaddleDet serials model
*
* \param[in] config_file Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml
*/
explicit PaddleDetPostprocessor(const std::string& config_file)
: ppdet_decoder_(config_file) {}
/** \brief Process the result of runtime and fill to ClassifyResult structure
*
* \param[in] tensors The inference result from runtime
* \param[in] result The output result of detection
* \return true if the postprocess successed, otherwise false
*/
bool Run(const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* result);
/// Apply box decoding and nms step for the outputs for the model.This is
/// only available for those model exported without box decoding and nms.
void ApplyDecodeAndNMS(const NMSOption& option = NMSOption()) {
apply_decode_and_nms_ = true;
ppdet_decoder_.SetNMSOption(option);
}
// Set scale_factor_ value.This is only available for those model exported
// without box decoding and nms.
void SetScaleFactor(const std::vector<float>& scale_factor_value) {
scale_factor_ = scale_factor_value;
}
private:
// for model without decode and nms.
bool apply_decode_and_nms_ = false;
bool DecodeAndNMSApplied() const { return apply_decode_and_nms_; }
bool ProcessUnDecodeResults(const std::vector<FDTensor>& tensors,
std::vector<DetectionResult>* results);
PPDetDecode ppdet_decoder_;
std::vector<float> scale_factor_{0.0, 0.0};
std::vector<float> GetScaleFactor() { return scale_factor_; }
// Process mask tensor for MaskRCNN
bool ProcessMask(const FDTensor& tensor,
std::vector<DetectionResult>* results);
};
} // namespace detection
} // namespace vision
} // namespace fastdeploy