mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Optimize Poros backend * fix error * Add more pybind * fix conflicts * add some deprecate notices
79 lines
2.6 KiB
C++
Executable File
79 lines
2.6 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "fastdeploy/runtime/backends/backend.h"
|
|
#include "fastdeploy/runtime/backends/poros/option.h"
|
|
#include "fastdeploy/runtime/backends/poros/common/compile.h"
|
|
#include "fastdeploy/runtime/backends/poros/common/poros_module.h"
|
|
|
|
namespace fastdeploy {
|
|
|
|
// Convert data type from fastdeploy to poros
|
|
at::ScalarType GetPorosDtype(const FDDataType& fd_dtype);
|
|
|
|
// Convert data type from poros to fastdeploy
|
|
FDDataType GetFdDtype(const at::ScalarType& dtype);
|
|
|
|
// at::ScalarType to std::string for FDERROR
|
|
std::string AtType2String(const at::ScalarType& dtype);
|
|
|
|
// Create at::Tensor
|
|
// is_backend_cuda specify if Poros use GPU Device
|
|
// While is_backend_cuda = true, and tensor.device = Device::GPU
|
|
at::Tensor CreatePorosValue(FDTensor& tensor, bool is_backend_cuda = false);
|
|
|
|
// Copy memory data from at::Tensor to fastdeploy::FDTensor
|
|
void CopyTensorToCpu(const at::Tensor& tensor, FDTensor* fd_tensor,
|
|
bool is_backend_cuda = false);
|
|
|
|
class PorosBackend : public BaseBackend {
|
|
public:
|
|
PorosBackend() {}
|
|
virtual ~PorosBackend() = default;
|
|
|
|
void BuildOption(const PorosBackendOption& option);
|
|
|
|
bool Compile(const std::string& model_file,
|
|
std::vector<std::vector<FDTensor>>& prewarm_tensors,
|
|
const PorosBackendOption& option = PorosBackendOption());
|
|
|
|
bool Infer(std::vector<FDTensor>& inputs, std::vector<FDTensor>* outputs,
|
|
bool copy_to_fd = true) override;
|
|
|
|
int NumInputs() const { return _numinputs; }
|
|
|
|
int NumOutputs() const { return _numoutputs; }
|
|
|
|
TensorInfo GetInputInfo(int index) override;
|
|
TensorInfo GetOutputInfo(int index) override;
|
|
std::vector<TensorInfo> GetInputInfos() override;
|
|
std::vector<TensorInfo> GetOutputInfos() override;
|
|
|
|
private:
|
|
baidu::mirana::poros::PorosOptions _options;
|
|
std::unique_ptr<baidu::mirana::poros::PorosModule> _poros_module;
|
|
std::vector<std::vector<c10::IValue>> _prewarm_datas;
|
|
int _numinputs = 1;
|
|
int _numoutputs = 1;
|
|
};
|
|
|
|
} // namespace fastdeploy
|