mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 01:22:59 +08:00

* Optimize Poros backend * fix error * Add more pybind * fix conflicts * add some deprecate notices
176 lines
6.2 KiB
C++
176 lines
6.2 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/runtime/backends/poros/poros_backend.h"
|
|
|
|
#include <sys/time.h>
|
|
|
|
namespace fastdeploy {
|
|
|
|
TensorInfo PorosBackend::GetInputInfo(int index) {
|
|
// eager mode cann't obtain input information before infer
|
|
TensorInfo info_input;
|
|
return info_input;
|
|
}
|
|
|
|
TensorInfo PorosBackend::GetOutputInfo(int index) {
|
|
// eager mode cann't obtain output information before infer
|
|
TensorInfo info_output;
|
|
return info_output;
|
|
}
|
|
|
|
std::vector<TensorInfo> PorosBackend::GetInputInfos() {
|
|
// eager mode cann't obtain inputs information before infer
|
|
std::vector<TensorInfo> info_inputs;
|
|
return info_inputs;
|
|
}
|
|
|
|
std::vector<TensorInfo> PorosBackend::GetOutputInfos() {
|
|
// eager mode cann't obtain outputs information before infer
|
|
std::vector<TensorInfo> info_outputs;
|
|
return info_outputs;
|
|
}
|
|
|
|
void PorosBackend::BuildOption(const PorosBackendOption& option) {
|
|
_options.device = (option.device == Device::GPU)
|
|
? baidu::mirana::poros::Device::GPU
|
|
: baidu::mirana::poros::Device::CPU;
|
|
_options.long_to_int = option.long_to_int;
|
|
_options.use_nvidia_tf32 = option.use_nvidia_tf32;
|
|
_options.device_id = option.device_id;
|
|
_options.unconst_ops_thres = option.unconst_ops_thres;
|
|
_options.is_dynamic = option.is_dynamic;
|
|
_options.max_workspace_size = option.max_workspace_size;
|
|
_options.use_fp16 = option.enable_fp16;
|
|
return;
|
|
}
|
|
|
|
bool PorosBackend::Compile(const std::string& model_file,
|
|
std::vector<std::vector<FDTensor>>& prewarm_tensors,
|
|
const PorosBackendOption& option) {
|
|
if (initialized_) {
|
|
FDERROR << "PorosBackend is already initlized, cannot initialize again."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
BuildOption(option);
|
|
torch::jit::Module mod;
|
|
mod = torch::jit::load(model_file);
|
|
mod.eval();
|
|
if (option.device == Device::GPU) {
|
|
mod.to(at::kCUDA);
|
|
} else {
|
|
mod.to(at::kCPU);
|
|
}
|
|
// get inputs_nums and outputs_nums
|
|
auto graph = mod.get_method("forward").graph();
|
|
auto inputs = graph->inputs();
|
|
// remove self node
|
|
_numinputs = inputs.size() - 1;
|
|
// FDTensor to at::Tensor
|
|
std::vector<std::vector<c10::IValue>> prewarm_datas;
|
|
bool is_backend_cuda = (option.device == Device::GPU);
|
|
for (size_t i = 0; i < prewarm_tensors.size(); ++i) {
|
|
std::vector<c10::IValue> prewarm_data;
|
|
for (size_t j = 0; j < prewarm_tensors[i].size(); ++j) {
|
|
auto tensor = CreatePorosValue(prewarm_tensors[i][j], is_backend_cuda);
|
|
prewarm_data.push_back(tensor);
|
|
}
|
|
prewarm_datas.push_back(prewarm_data);
|
|
}
|
|
// get outputs nums
|
|
auto temp_result = mod.forward(prewarm_datas[0]);
|
|
size_t outputs_nums = 0;
|
|
if (temp_result.isTensor()) {
|
|
outputs_nums += 1;
|
|
} else if (temp_result.isTuple()) {
|
|
auto temp_result_tuple = temp_result.toTuple();
|
|
for (size_t i = 0; i < temp_result_tuple->elements().size(); ++i) {
|
|
auto poros_tensor = temp_result_tuple->elements()[i];
|
|
if (poros_tensor.isTensor()) {
|
|
outputs_nums += 1;
|
|
} else if (poros_tensor.isList()) {
|
|
auto poros_tensor_list = poros_tensor.toList();
|
|
outputs_nums += poros_tensor_list.size();
|
|
} else if (poros_tensor.isTuple()) {
|
|
auto poros_tensor_tuple = poros_tensor.toTuple();
|
|
outputs_nums += poros_tensor_tuple->elements().size();
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
_numoutputs = outputs_nums;
|
|
_poros_module = baidu::mirana::poros::Compile(mod, prewarm_datas, _options);
|
|
if (_poros_module == nullptr) {
|
|
FDERROR << "PorosBackend initlize Failed, try initialize again."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
initialized_ = true;
|
|
return true;
|
|
}
|
|
|
|
bool PorosBackend::Infer(std::vector<FDTensor>& inputs,
|
|
std::vector<FDTensor>* outputs, bool copy_to_fd) {
|
|
// Convert FD Tensor to PyTorch Tensor
|
|
std::vector<torch::jit::IValue> poros_inputs;
|
|
bool is_backend_cuda =
|
|
_options.device == baidu::mirana::poros::Device::GPU ? true : false;
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
poros_inputs.push_back(CreatePorosValue(inputs[i], is_backend_cuda));
|
|
}
|
|
// Infer
|
|
auto poros_outputs = _poros_module->forward(poros_inputs);
|
|
// Convert PyTorch Tensor to FD Tensor
|
|
if (poros_outputs.isTensor()) {
|
|
CopyTensorToCpu(poros_outputs.toTensor(), &((*outputs)[0]),
|
|
is_backend_cuda);
|
|
} else if (poros_outputs.isTuple()) {
|
|
// deal with multi outputs
|
|
auto poros_outputs_tuple = poros_outputs.toTuple();
|
|
size_t index = 0;
|
|
for (size_t i = 0; i < poros_outputs_tuple->elements().size(); ++i) {
|
|
auto poros_tensor = poros_outputs_tuple->elements()[i];
|
|
if (poros_tensor.isTensor()) {
|
|
CopyTensorToCpu(poros_tensor.toTensor(), &((*outputs)[index]),
|
|
is_backend_cuda);
|
|
index += 1;
|
|
} else if (poros_tensor.isList()) {
|
|
auto poros_tensor_list = poros_tensor.toList();
|
|
for (const auto list_idx : c10::irange(0, poros_tensor_list.size())) {
|
|
const auto& elt = poros_tensor_list.get(list_idx);
|
|
CopyTensorToCpu(elt.toTensor(), &((*outputs)[index]),
|
|
is_backend_cuda);
|
|
index += 1;
|
|
}
|
|
} else if (poros_tensor.isTuple()) {
|
|
auto poros_tensor_tuple = poros_tensor.toTuple();
|
|
for (size_t j = 0; j < poros_tensor_tuple->elements().size(); ++j) {
|
|
CopyTensorToCpu(poros_tensor_tuple->elements()[j].toTensor(),
|
|
&((*outputs)[index]), is_backend_cuda);
|
|
index += 1;
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
} else {
|
|
FDERROR << "Convert to FDTensor Failed!!!!!" << std::endl;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace fastdeploy
|