Files
FastDeploy/examples/vision/segmentation/paddleseg/rknpu2/cpp/infer.cc
Zheng-Bicheng dd5759bd99 [Model] Update PPSeg Preprocess (#1007)
* 更新PPSeg pybind and python

* 更新PPSeg pybind and python
2022-12-29 21:14:39 +08:00

100 lines
3.2 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <string>
#include "fastdeploy/vision.h"
void ONNXInfer(const std::string& model_dir, const std::string& image_file) {
std::string model_file = model_dir + "/Portrait_PP_HumanSegV2_Lite_256x144_infer.onnx";
std::string params_file;
std::string config_file = model_dir + "/deploy.yaml";
auto option = fastdeploy::RuntimeOption();
option.UseCpu();
auto format = fastdeploy::ModelFormat::ONNX;
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file, option, format);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
fastdeploy::TimeCounter tc;
tc.Start();
auto im = cv::imread(image_file);
fastdeploy::vision::SegmentationResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
auto vis_im = fastdeploy::vision::VisSegmentation(im, res);
tc.End();
tc.PrintInfo("PPSeg in ONNX");
cv::imwrite("infer_onnx.jpg", vis_im);
std::cout
<< "Visualized result saved in ./infer_onnx.jpg"
<< std::endl;
}
void RKNPU2Infer(const std::string& model_dir, const std::string& image_file) {
std::string model_file = model_dir + "/Portrait_PP_HumanSegV2_Lite_256x144_infer_rk3588.rknn";
std::string params_file;
std::string config_file = model_dir + "/deploy.yaml";
auto option = fastdeploy::RuntimeOption();
option.UseRKNPU2();
auto format = fastdeploy::ModelFormat::RKNN;
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file, option, format);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
model.GetPreprocessor().DisablePermute();
model.GetPreprocessor().DisableNormalize();
fastdeploy::TimeCounter tc;
tc.Start();
auto im = cv::imread(image_file);
fastdeploy::vision::SegmentationResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
auto vis_im = fastdeploy::vision::VisSegmentation(im, res);
tc.End();
tc.PrintInfo("PPSeg in RKNPU2");
cv::imwrite("infer_rknn.jpg", vis_im);
std::cout
<< "Visualized result saved in ./infer_rknn.jpg"
<< std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 3) {
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
"e.g ./infer_model ./picodet_model_dir ./test.jpeg"
<< std::endl;
return -1;
}
RKNPU2Infer(argv[1], argv[2]);
// ONNXInfer(argv[1], argv[2]);
return 0;
}