Files
FastDeploy/fastdeploy/vision/segmentation/ppseg/model.cc
DefTruth a51e5a6e55 [Android] Add android aar package (#416)
* [Android] Add Android build docs and demo (#26)

* [Backend] Add override flag to lite backend

* [Docs] Add Android C++ SDK build docs

* [Doc] fix android_build_docs typos

* Update CMakeLists.txt

* Update android.md

* [Doc] Add PicoDet Android demo docs

* [Doc] Update PicoDet Andorid demo docs

* [Doc] Update PaddleClasModel Android demo docs

* [Doc] Update fastdeploy android jni docs

* [Doc] Update fastdeploy android jni usage docs

* [Android] init fastdeploy android jar package

* [Backend] support int8 option for lite backend

* [Model] add Backend::Lite to paddle model

* [Backend] use CopyFromCpu for lite backend.

* [Android] package jni srcs and java api into aar

* Update infer.cc

* Update infer.cc

* [Android] Update package build.gradle

* [Android] Update android app examples

* [Android] update android detection app
2022-10-26 17:01:14 +08:00

363 lines
13 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/segmentation/ppseg/model.h"
#include "fastdeploy/vision/utils/utils.h"
#include "yaml-cpp/yaml.h"
namespace fastdeploy {
namespace vision {
namespace segmentation {
PaddleSegModel::PaddleSegModel(const std::string& model_file,
const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
config_file_ = config_file;
valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool PaddleSegModel::Initialize() {
if (!BuildPreprocessPipelineFromConfig()) {
FDERROR << "Failed to build preprocess pipeline from configuration file."
<< std::endl;
return false;
}
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool PaddleSegModel::BuildPreprocessPipelineFromConfig() {
processors_.clear();
YAML::Node cfg;
processors_.push_back(std::make_shared<BGR2RGB>());
try {
cfg = YAML::LoadFile(config_file_);
} catch (YAML::BadFile& e) {
FDERROR << "Failed to load yaml file " << config_file_
<< ", maybe you should check this file." << std::endl;
return false;
}
bool yml_contain_resize_op = false;
if (cfg["Deploy"]["transforms"]) {
auto preprocess_cfg = cfg["Deploy"]["transforms"];
for (const auto& op : preprocess_cfg) {
FDASSERT(op.IsMap(),
"Require the transform information in yaml be Map type.");
if (op["type"].as<std::string>() == "Normalize") {
std::vector<float> mean = {0.5, 0.5, 0.5};
std::vector<float> std = {0.5, 0.5, 0.5};
if (op["mean"]) {
mean = op["mean"].as<std::vector<float>>();
}
if (op["std"]) {
std = op["std"].as<std::vector<float>>();
}
processors_.push_back(std::make_shared<Normalize>(mean, std));
} else if (op["type"].as<std::string>() == "Resize") {
yml_contain_resize_op = true;
const auto& target_size = op["target_size"];
int resize_width = target_size[0].as<int>();
int resize_height = target_size[1].as<int>();
processors_.push_back(
std::make_shared<Resize>(resize_width, resize_height));
} else {
std::string op_name = op["type"].as<std::string>();
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
<< std::endl;
return false;
}
}
}
if (cfg["Deploy"]["input_shape"]) {
auto input_shape = cfg["Deploy"]["input_shape"];
int input_batch = input_shape[0].as<int>();
int input_channel = input_shape[1].as<int>();
int input_height = input_shape[2].as<int>();
int input_width = input_shape[3].as<int>();
if (input_height == -1 || input_width == -1) {
FDWARNING << "The exported PaddleSeg model is with dynamic shape input, "
<< "which is not supported by ONNX Runtime and Tensorrt. "
<< "Only OpenVINO and Paddle Inference are available now. "
<< "For using ONNX Runtime or Tensorrt, "
<< "Please refer to https://github.com/PaddlePaddle/PaddleSeg/blob/develop/docs/model_export.md"
<< " to export model with fixed input shape."
<< std::endl;
valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER};
}
if (input_height != -1 && input_width != -1 && !yml_contain_resize_op) {
processors_.push_back(
std::make_shared<Resize>(input_width, input_height));
}
}
if (cfg["Deploy"]["output_op"]) {
std::string output_op = cfg["Deploy"]["output_op"].as<std::string>();
if (output_op == "softmax") {
is_with_softmax = true;
is_with_argmax = false;
} else if (output_op == "argmax") {
is_with_softmax = false;
is_with_argmax = true;
} else if (output_op == "none") {
is_with_softmax = false;
is_with_argmax = false;
} else {
FDERROR << "Unexcepted output_op operator in deploy.yml: " << output_op
<< "." << std::endl;
}
}
processors_.push_back(std::make_shared<HWC2CHW>());
return true;
}
bool PaddleSegModel::Preprocess(Mat* mat, FDTensor* output) {
for (size_t i = 0; i < processors_.size(); ++i) {
if (processors_[i]->Name().compare("Resize") == 0) {
auto processor = dynamic_cast<Resize*>(processors_[i].get());
int resize_width = -1;
int resize_height = -1;
std::tie(resize_width, resize_height) = processor->GetWidthAndHeight();
if (is_vertical_screen && (resize_width > resize_height)) {
if (!(processor->SetWidthAndHeight(resize_height, resize_width))) {
FDERROR << "Failed to set width and height of "
<< processors_[i]->Name() << " processor." << std::endl;
}
}
}
if (!(*(processors_[i].get()))(mat)) {
FDERROR << "Failed to process image data in " << processors_[i]->Name()
<< "." << std::endl;
return false;
}
}
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1);
output->name = InputInfoOfRuntime(0).name;
return true;
}
bool PaddleSegModel::Postprocess(
FDTensor* infer_result, SegmentationResult* result,
const std::map<std::string, std::array<int, 2>>& im_info) {
// PaddleSeg has three types of inference output:
// 1. output with argmax and without softmax. 3-D matrix N(C)HW, Channel
// always 1, the element in matrix is classified label_id INT64 Type.
// 2. output without argmax and without softmax. 4-D matrix NCHW, N(batch)
// always
// 1(only support batch size 1), Channel is the num of classes. The
// element is the logits of classes
// FP32
// 3. output without argmax and with softmax. 4-D matrix NCHW, the result
// of 2 with softmax layer
// Fastdeploy output:
// 1. label_map
// 2. score_map(optional)
// 3. shape: 2-D HW
FDASSERT(infer_result->dtype == FDDataType::INT64 ||
infer_result->dtype == FDDataType::FP32 ||
infer_result->dtype == FDDataType::INT32,
"Require the data type of output is int64, fp32 or int32, but now "
"it's %s.",
Str(infer_result->dtype).c_str());
result->Clear();
FDASSERT(infer_result->shape[0] == 1, "Only support batch size = 1.");
int64_t infer_batch = infer_result->shape[0];
int64_t infer_channel = 0;
int64_t infer_height = 0;
int64_t infer_width = 0;
if (is_with_argmax) {
infer_channel = 1;
infer_height = infer_result->shape[1];
infer_width = infer_result->shape[2];
} else {
infer_channel = infer_result->shape[1];
infer_height = infer_result->shape[2];
infer_width = infer_result->shape[3];
}
int64_t infer_chw = infer_channel * infer_height * infer_width;
bool is_resized = false;
auto iter_ipt = im_info.find("input_shape");
FDASSERT(iter_ipt != im_info.end(), "Cannot find input_shape from im_info.");
int ipt_h = iter_ipt->second[0];
int ipt_w = iter_ipt->second[1];
if (ipt_h != infer_height || ipt_w != infer_width) {
is_resized = true;
}
if (!is_with_softmax && apply_softmax) {
Softmax(*infer_result, infer_result, 1);
}
if (!is_with_argmax) {
// output without argmax
result->contain_score_map = true;
std::vector<int64_t> dim{0, 2, 3, 1};
Transpose(*infer_result, infer_result, dim);
}
// batch always 1, so ignore
infer_result->shape = {infer_height, infer_width, infer_channel};
// for resize mat below
FDTensor new_infer_result;
Mat* mat = nullptr;
std::vector<float_t>* fp32_result_buffer = nullptr;
if (is_resized) {
if (infer_result->dtype == FDDataType::INT64 ||
infer_result->dtype == FDDataType::INT32) {
if (infer_result->dtype == FDDataType::INT64) {
int64_t* infer_result_buffer =
static_cast<int64_t*>(infer_result->Data());
// cv::resize don't support `CV_8S` or `CV_32S`
// refer to https://github.com/opencv/opencv/issues/20991
// https://github.com/opencv/opencv/issues/7862
fp32_result_buffer = new std::vector<float_t>(
infer_result_buffer, infer_result_buffer + infer_chw);
}
if (infer_result->dtype == FDDataType::INT32) {
int32_t* infer_result_buffer =
static_cast<int32_t*>(infer_result->Data());
// cv::resize don't support `CV_8S` or `CV_32S`
// refer to https://github.com/opencv/opencv/issues/20991
// https://github.com/opencv/opencv/issues/7862
fp32_result_buffer = new std::vector<float_t>(
infer_result_buffer, infer_result_buffer + infer_chw);
}
infer_result->Resize(infer_result->shape, FDDataType::FP32);
infer_result->SetExternalData(
infer_result->shape, FDDataType::FP32,
static_cast<void*>(fp32_result_buffer->data()));
}
mat = new Mat(CreateFromTensor(*infer_result));
Resize::Run(mat, ipt_w, ipt_h, -1.0f, -1.0f, 1);
mat->ShareWithTensor(&new_infer_result);
result->shape = new_infer_result.shape;
} else {
result->shape = infer_result->shape;
}
// output shape is 2-D HW layout, so out_num = H * W
int out_num =
std::accumulate(result->shape.begin(), result->shape.begin() + 2, 1,
std::multiplies<int>());
result->Resize(out_num);
if (result->contain_score_map) {
// output with label_map and score_map
int32_t* argmax_infer_result_buffer = nullptr;
float_t* score_infer_result_buffer = nullptr;
FDTensor argmax_infer_result;
FDTensor max_score_result;
std::vector<int64_t> reduce_dim{-1};
// argmax
if (is_resized) {
ArgMax(new_infer_result, &argmax_infer_result, -1, FDDataType::INT32);
Max(new_infer_result, &max_score_result, reduce_dim);
} else {
ArgMax(*infer_result, &argmax_infer_result, -1, FDDataType::INT32);
Max(*infer_result, &max_score_result, reduce_dim);
}
argmax_infer_result_buffer =
static_cast<int32_t*>(argmax_infer_result.Data());
score_infer_result_buffer = static_cast<float_t*>(max_score_result.Data());
for (int i = 0; i < out_num; i++) {
result->label_map[i] =
static_cast<uint8_t>(*(argmax_infer_result_buffer + i));
}
std::memcpy(result->score_map.data(), score_infer_result_buffer,
out_num * sizeof(float_t));
} else {
// output only with label_map
if (is_resized) {
float_t* infer_result_buffer =
static_cast<float_t*>(new_infer_result.Data());
for (int i = 0; i < out_num; i++) {
result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i));
}
} else {
if (infer_result->dtype == FDDataType::INT64) {
const int64_t* infer_result_buffer =
static_cast<const int64_t*>(infer_result->Data());
for (int i = 0; i < out_num; i++) {
result->label_map[i] =
static_cast<uint8_t>(*(infer_result_buffer + i));
}
}
if (infer_result->dtype == FDDataType::INT32) {
const int32_t* infer_result_buffer =
static_cast<const int32_t*>(infer_result->Data());
for (int i = 0; i < out_num; i++) {
result->label_map[i] =
static_cast<uint8_t>(*(infer_result_buffer + i));
}
}
}
}
// HWC remove C
result->shape.erase(result->shape.begin() + 2);
delete fp32_result_buffer;
delete mat;
mat = nullptr;
return true;
}
bool PaddleSegModel::Predict(cv::Mat* im, SegmentationResult* result) {
Mat mat(*im);
std::vector<FDTensor> processed_data(1);
std::map<std::string, std::array<int, 2>> im_info;
// Record the shape of image and the shape of preprocessed image
im_info["input_shape"] = {static_cast<int>(mat.Height()),
static_cast<int>(mat.Width())};
if (!Preprocess(&mat, &(processed_data[0]))) {
FDERROR << "Failed to preprocess input data while using model:"
<< ModelName() << "." << std::endl;
return false;
}
std::vector<FDTensor> infer_result(1);
if (!Infer(processed_data, &infer_result)) {
FDERROR << "Failed to inference while using model:" << ModelName() << "."
<< std::endl;
return false;
}
if (!Postprocess(&infer_result[0], result, im_info)) {
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
<< std::endl;
return false;
}
return true;
}
} // namespace segmentation
} // namespace vision
} // namespace fastdeploy