mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-04 08:16:42 +08:00

* [Android] Add Android build docs and demo (#26) * [Backend] Add override flag to lite backend * [Docs] Add Android C++ SDK build docs * [Doc] fix android_build_docs typos * Update CMakeLists.txt * Update android.md * [Doc] Add PicoDet Android demo docs * [Doc] Update PicoDet Andorid demo docs * [Doc] Update PaddleClasModel Android demo docs * [Doc] Update fastdeploy android jni docs * [Doc] Update fastdeploy android jni usage docs * [Android] init fastdeploy android jar package * [Backend] support int8 option for lite backend * [Model] add Backend::Lite to paddle model * [Backend] use CopyFromCpu for lite backend. * [Android] package jni srcs and java api into aar * Update infer.cc * Update infer.cc * [Android] Update package build.gradle * [Android] Update android app examples * [Android] update android detection app
363 lines
13 KiB
C++
Executable File
363 lines
13 KiB
C++
Executable File
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/segmentation/ppseg/model.h"
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
#include "yaml-cpp/yaml.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace segmentation {
|
|
|
|
PaddleSegModel::PaddleSegModel(const std::string& model_file,
|
|
const std::string& params_file,
|
|
const std::string& config_file,
|
|
const RuntimeOption& custom_option,
|
|
const ModelFormat& model_format) {
|
|
config_file_ = config_file;
|
|
valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER, Backend::ORT, Backend::LITE};
|
|
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
|
|
runtime_option = custom_option;
|
|
runtime_option.model_format = model_format;
|
|
runtime_option.model_file = model_file;
|
|
runtime_option.params_file = params_file;
|
|
initialized = Initialize();
|
|
}
|
|
|
|
bool PaddleSegModel::Initialize() {
|
|
if (!BuildPreprocessPipelineFromConfig()) {
|
|
FDERROR << "Failed to build preprocess pipeline from configuration file."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
if (!InitRuntime()) {
|
|
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PaddleSegModel::BuildPreprocessPipelineFromConfig() {
|
|
processors_.clear();
|
|
YAML::Node cfg;
|
|
processors_.push_back(std::make_shared<BGR2RGB>());
|
|
try {
|
|
cfg = YAML::LoadFile(config_file_);
|
|
} catch (YAML::BadFile& e) {
|
|
FDERROR << "Failed to load yaml file " << config_file_
|
|
<< ", maybe you should check this file." << std::endl;
|
|
return false;
|
|
}
|
|
bool yml_contain_resize_op = false;
|
|
|
|
if (cfg["Deploy"]["transforms"]) {
|
|
auto preprocess_cfg = cfg["Deploy"]["transforms"];
|
|
for (const auto& op : preprocess_cfg) {
|
|
FDASSERT(op.IsMap(),
|
|
"Require the transform information in yaml be Map type.");
|
|
if (op["type"].as<std::string>() == "Normalize") {
|
|
std::vector<float> mean = {0.5, 0.5, 0.5};
|
|
std::vector<float> std = {0.5, 0.5, 0.5};
|
|
if (op["mean"]) {
|
|
mean = op["mean"].as<std::vector<float>>();
|
|
}
|
|
if (op["std"]) {
|
|
std = op["std"].as<std::vector<float>>();
|
|
}
|
|
processors_.push_back(std::make_shared<Normalize>(mean, std));
|
|
|
|
} else if (op["type"].as<std::string>() == "Resize") {
|
|
yml_contain_resize_op = true;
|
|
const auto& target_size = op["target_size"];
|
|
int resize_width = target_size[0].as<int>();
|
|
int resize_height = target_size[1].as<int>();
|
|
processors_.push_back(
|
|
std::make_shared<Resize>(resize_width, resize_height));
|
|
} else {
|
|
std::string op_name = op["type"].as<std::string>();
|
|
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
if (cfg["Deploy"]["input_shape"]) {
|
|
auto input_shape = cfg["Deploy"]["input_shape"];
|
|
int input_batch = input_shape[0].as<int>();
|
|
int input_channel = input_shape[1].as<int>();
|
|
int input_height = input_shape[2].as<int>();
|
|
int input_width = input_shape[3].as<int>();
|
|
if (input_height == -1 || input_width == -1) {
|
|
FDWARNING << "The exported PaddleSeg model is with dynamic shape input, "
|
|
<< "which is not supported by ONNX Runtime and Tensorrt. "
|
|
<< "Only OpenVINO and Paddle Inference are available now. "
|
|
<< "For using ONNX Runtime or Tensorrt, "
|
|
<< "Please refer to https://github.com/PaddlePaddle/PaddleSeg/blob/develop/docs/model_export.md"
|
|
<< " to export model with fixed input shape."
|
|
<< std::endl;
|
|
valid_cpu_backends = {Backend::OPENVINO, Backend::PDINFER, Backend::LITE};
|
|
valid_gpu_backends = {Backend::PDINFER};
|
|
}
|
|
if (input_height != -1 && input_width != -1 && !yml_contain_resize_op) {
|
|
processors_.push_back(
|
|
std::make_shared<Resize>(input_width, input_height));
|
|
}
|
|
}
|
|
if (cfg["Deploy"]["output_op"]) {
|
|
std::string output_op = cfg["Deploy"]["output_op"].as<std::string>();
|
|
if (output_op == "softmax") {
|
|
is_with_softmax = true;
|
|
is_with_argmax = false;
|
|
} else if (output_op == "argmax") {
|
|
is_with_softmax = false;
|
|
is_with_argmax = true;
|
|
} else if (output_op == "none") {
|
|
is_with_softmax = false;
|
|
is_with_argmax = false;
|
|
} else {
|
|
FDERROR << "Unexcepted output_op operator in deploy.yml: " << output_op
|
|
<< "." << std::endl;
|
|
}
|
|
}
|
|
processors_.push_back(std::make_shared<HWC2CHW>());
|
|
return true;
|
|
}
|
|
|
|
bool PaddleSegModel::Preprocess(Mat* mat, FDTensor* output) {
|
|
for (size_t i = 0; i < processors_.size(); ++i) {
|
|
if (processors_[i]->Name().compare("Resize") == 0) {
|
|
auto processor = dynamic_cast<Resize*>(processors_[i].get());
|
|
int resize_width = -1;
|
|
int resize_height = -1;
|
|
std::tie(resize_width, resize_height) = processor->GetWidthAndHeight();
|
|
if (is_vertical_screen && (resize_width > resize_height)) {
|
|
if (!(processor->SetWidthAndHeight(resize_height, resize_width))) {
|
|
FDERROR << "Failed to set width and height of "
|
|
<< processors_[i]->Name() << " processor." << std::endl;
|
|
}
|
|
}
|
|
}
|
|
if (!(*(processors_[i].get()))(mat)) {
|
|
FDERROR << "Failed to process image data in " << processors_[i]->Name()
|
|
<< "." << std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
mat->ShareWithTensor(output);
|
|
output->shape.insert(output->shape.begin(), 1);
|
|
output->name = InputInfoOfRuntime(0).name;
|
|
return true;
|
|
}
|
|
|
|
bool PaddleSegModel::Postprocess(
|
|
FDTensor* infer_result, SegmentationResult* result,
|
|
const std::map<std::string, std::array<int, 2>>& im_info) {
|
|
// PaddleSeg has three types of inference output:
|
|
// 1. output with argmax and without softmax. 3-D matrix N(C)HW, Channel
|
|
// always 1, the element in matrix is classified label_id INT64 Type.
|
|
// 2. output without argmax and without softmax. 4-D matrix NCHW, N(batch)
|
|
// always
|
|
// 1(only support batch size 1), Channel is the num of classes. The
|
|
// element is the logits of classes
|
|
// FP32
|
|
// 3. output without argmax and with softmax. 4-D matrix NCHW, the result
|
|
// of 2 with softmax layer
|
|
// Fastdeploy output:
|
|
// 1. label_map
|
|
// 2. score_map(optional)
|
|
// 3. shape: 2-D HW
|
|
FDASSERT(infer_result->dtype == FDDataType::INT64 ||
|
|
infer_result->dtype == FDDataType::FP32 ||
|
|
infer_result->dtype == FDDataType::INT32,
|
|
"Require the data type of output is int64, fp32 or int32, but now "
|
|
"it's %s.",
|
|
Str(infer_result->dtype).c_str());
|
|
result->Clear();
|
|
FDASSERT(infer_result->shape[0] == 1, "Only support batch size = 1.");
|
|
|
|
int64_t infer_batch = infer_result->shape[0];
|
|
int64_t infer_channel = 0;
|
|
int64_t infer_height = 0;
|
|
int64_t infer_width = 0;
|
|
|
|
if (is_with_argmax) {
|
|
infer_channel = 1;
|
|
infer_height = infer_result->shape[1];
|
|
infer_width = infer_result->shape[2];
|
|
} else {
|
|
infer_channel = infer_result->shape[1];
|
|
infer_height = infer_result->shape[2];
|
|
infer_width = infer_result->shape[3];
|
|
}
|
|
int64_t infer_chw = infer_channel * infer_height * infer_width;
|
|
|
|
bool is_resized = false;
|
|
auto iter_ipt = im_info.find("input_shape");
|
|
FDASSERT(iter_ipt != im_info.end(), "Cannot find input_shape from im_info.");
|
|
int ipt_h = iter_ipt->second[0];
|
|
int ipt_w = iter_ipt->second[1];
|
|
if (ipt_h != infer_height || ipt_w != infer_width) {
|
|
is_resized = true;
|
|
}
|
|
|
|
if (!is_with_softmax && apply_softmax) {
|
|
Softmax(*infer_result, infer_result, 1);
|
|
}
|
|
|
|
if (!is_with_argmax) {
|
|
// output without argmax
|
|
result->contain_score_map = true;
|
|
|
|
std::vector<int64_t> dim{0, 2, 3, 1};
|
|
Transpose(*infer_result, infer_result, dim);
|
|
}
|
|
// batch always 1, so ignore
|
|
infer_result->shape = {infer_height, infer_width, infer_channel};
|
|
|
|
// for resize mat below
|
|
FDTensor new_infer_result;
|
|
Mat* mat = nullptr;
|
|
std::vector<float_t>* fp32_result_buffer = nullptr;
|
|
if (is_resized) {
|
|
if (infer_result->dtype == FDDataType::INT64 ||
|
|
infer_result->dtype == FDDataType::INT32) {
|
|
if (infer_result->dtype == FDDataType::INT64) {
|
|
int64_t* infer_result_buffer =
|
|
static_cast<int64_t*>(infer_result->Data());
|
|
// cv::resize don't support `CV_8S` or `CV_32S`
|
|
// refer to https://github.com/opencv/opencv/issues/20991
|
|
// https://github.com/opencv/opencv/issues/7862
|
|
fp32_result_buffer = new std::vector<float_t>(
|
|
infer_result_buffer, infer_result_buffer + infer_chw);
|
|
}
|
|
if (infer_result->dtype == FDDataType::INT32) {
|
|
int32_t* infer_result_buffer =
|
|
static_cast<int32_t*>(infer_result->Data());
|
|
// cv::resize don't support `CV_8S` or `CV_32S`
|
|
// refer to https://github.com/opencv/opencv/issues/20991
|
|
// https://github.com/opencv/opencv/issues/7862
|
|
fp32_result_buffer = new std::vector<float_t>(
|
|
infer_result_buffer, infer_result_buffer + infer_chw);
|
|
}
|
|
infer_result->Resize(infer_result->shape, FDDataType::FP32);
|
|
infer_result->SetExternalData(
|
|
infer_result->shape, FDDataType::FP32,
|
|
static_cast<void*>(fp32_result_buffer->data()));
|
|
}
|
|
mat = new Mat(CreateFromTensor(*infer_result));
|
|
Resize::Run(mat, ipt_w, ipt_h, -1.0f, -1.0f, 1);
|
|
mat->ShareWithTensor(&new_infer_result);
|
|
result->shape = new_infer_result.shape;
|
|
} else {
|
|
result->shape = infer_result->shape;
|
|
}
|
|
// output shape is 2-D HW layout, so out_num = H * W
|
|
int out_num =
|
|
std::accumulate(result->shape.begin(), result->shape.begin() + 2, 1,
|
|
std::multiplies<int>());
|
|
result->Resize(out_num);
|
|
if (result->contain_score_map) {
|
|
// output with label_map and score_map
|
|
int32_t* argmax_infer_result_buffer = nullptr;
|
|
float_t* score_infer_result_buffer = nullptr;
|
|
FDTensor argmax_infer_result;
|
|
FDTensor max_score_result;
|
|
std::vector<int64_t> reduce_dim{-1};
|
|
// argmax
|
|
if (is_resized) {
|
|
ArgMax(new_infer_result, &argmax_infer_result, -1, FDDataType::INT32);
|
|
Max(new_infer_result, &max_score_result, reduce_dim);
|
|
} else {
|
|
ArgMax(*infer_result, &argmax_infer_result, -1, FDDataType::INT32);
|
|
Max(*infer_result, &max_score_result, reduce_dim);
|
|
}
|
|
argmax_infer_result_buffer =
|
|
static_cast<int32_t*>(argmax_infer_result.Data());
|
|
score_infer_result_buffer = static_cast<float_t*>(max_score_result.Data());
|
|
for (int i = 0; i < out_num; i++) {
|
|
result->label_map[i] =
|
|
static_cast<uint8_t>(*(argmax_infer_result_buffer + i));
|
|
}
|
|
std::memcpy(result->score_map.data(), score_infer_result_buffer,
|
|
out_num * sizeof(float_t));
|
|
|
|
} else {
|
|
// output only with label_map
|
|
if (is_resized) {
|
|
float_t* infer_result_buffer =
|
|
static_cast<float_t*>(new_infer_result.Data());
|
|
for (int i = 0; i < out_num; i++) {
|
|
result->label_map[i] = static_cast<uint8_t>(*(infer_result_buffer + i));
|
|
}
|
|
} else {
|
|
if (infer_result->dtype == FDDataType::INT64) {
|
|
const int64_t* infer_result_buffer =
|
|
static_cast<const int64_t*>(infer_result->Data());
|
|
for (int i = 0; i < out_num; i++) {
|
|
result->label_map[i] =
|
|
static_cast<uint8_t>(*(infer_result_buffer + i));
|
|
}
|
|
}
|
|
if (infer_result->dtype == FDDataType::INT32) {
|
|
const int32_t* infer_result_buffer =
|
|
static_cast<const int32_t*>(infer_result->Data());
|
|
for (int i = 0; i < out_num; i++) {
|
|
result->label_map[i] =
|
|
static_cast<uint8_t>(*(infer_result_buffer + i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// HWC remove C
|
|
result->shape.erase(result->shape.begin() + 2);
|
|
delete fp32_result_buffer;
|
|
delete mat;
|
|
mat = nullptr;
|
|
return true;
|
|
}
|
|
|
|
bool PaddleSegModel::Predict(cv::Mat* im, SegmentationResult* result) {
|
|
Mat mat(*im);
|
|
std::vector<FDTensor> processed_data(1);
|
|
|
|
std::map<std::string, std::array<int, 2>> im_info;
|
|
|
|
// Record the shape of image and the shape of preprocessed image
|
|
im_info["input_shape"] = {static_cast<int>(mat.Height()),
|
|
static_cast<int>(mat.Width())};
|
|
|
|
if (!Preprocess(&mat, &(processed_data[0]))) {
|
|
FDERROR << "Failed to preprocess input data while using model:"
|
|
<< ModelName() << "." << std::endl;
|
|
return false;
|
|
}
|
|
std::vector<FDTensor> infer_result(1);
|
|
if (!Infer(processed_data, &infer_result)) {
|
|
FDERROR << "Failed to inference while using model:" << ModelName() << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
if (!Postprocess(&infer_result[0], result, im_info)) {
|
|
FDERROR << "Failed to postprocess while using model:" << ModelName() << "."
|
|
<< std::endl;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace segmentation
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|