Files
FastDeploy/fastdeploy/vision/detection/ppdet/rcnn.cc
DefTruth a51e5a6e55 [Android] Add android aar package (#416)
* [Android] Add Android build docs and demo (#26)

* [Backend] Add override flag to lite backend

* [Docs] Add Android C++ SDK build docs

* [Doc] fix android_build_docs typos

* Update CMakeLists.txt

* Update android.md

* [Doc] Add PicoDet Android demo docs

* [Doc] Update PicoDet Andorid demo docs

* [Doc] Update PaddleClasModel Android demo docs

* [Doc] Update fastdeploy android jni docs

* [Doc] Update fastdeploy android jni usage docs

* [Android] init fastdeploy android jar package

* [Backend] support int8 option for lite backend

* [Model] add Backend::Lite to paddle model

* [Backend] use CopyFromCpu for lite backend.

* [Android] package jni srcs and java api into aar

* Update infer.cc

* Update infer.cc

* [Android] Update package build.gradle

* [Android] Update android app examples

* [Android] update android detection app
2022-10-26 17:01:14 +08:00

85 lines
2.9 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/ppdet/rcnn.h"
namespace fastdeploy {
namespace vision {
namespace detection {
FasterRCNN::FasterRCNN(const std::string& model_file,
const std::string& params_file,
const std::string& config_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
config_file_ = config_file;
valid_cpu_backends = {Backend::PDINFER, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER};
has_nms_ = true;
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool FasterRCNN::Initialize() {
if (!BuildPreprocessPipelineFromConfig()) {
FDERROR << "Failed to build preprocess pipeline from configuration file."
<< std::endl;
return false;
}
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
return true;
}
bool FasterRCNN::Preprocess(Mat* mat, std::vector<FDTensor>* outputs) {
int origin_w = mat->Width();
int origin_h = mat->Height();
float scale[2] = {1.0, 1.0};
for (size_t i = 0; i < processors_.size(); ++i) {
if (!(*(processors_[i].get()))(mat)) {
FDERROR << "Failed to process image data in " << processors_[i]->Name()
<< "." << std::endl;
return false;
}
if (processors_[i]->Name().find("Resize") != std::string::npos) {
scale[0] = mat->Height() * 1.0 / origin_h;
scale[1] = mat->Width() * 1.0 / origin_w;
}
}
outputs->resize(3);
(*outputs)[0].Allocate({1, 2}, FDDataType::FP32, "im_shape");
(*outputs)[2].Allocate({1, 2}, FDDataType::FP32, "scale_factor");
float* ptr0 = static_cast<float*>((*outputs)[0].MutableData());
ptr0[0] = mat->Height();
ptr0[1] = mat->Width();
float* ptr2 = static_cast<float*>((*outputs)[2].MutableData());
ptr2[0] = scale[0];
ptr2[1] = scale[1];
(*outputs)[1].name = "image";
mat->ShareWithTensor(&((*outputs)[1]));
// reshape to [1, c, h, w]
(*outputs)[1].shape.insert((*outputs)[1].shape.begin(), 1);
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy