Files
FastDeploy/fastdeploy/vision/detection/contrib/yolov5_pybind.cc
Wang Xinyu c8d6c8244e [Model] Yolov5/v5lite/v6/v7/v7end2end: CUDA preprocessing (#370)
* add yolo cuda preprocessing

* cmake build cuda src

* yolov5 support cuda preprocessing

* yolov5 cuda preprocessing configurable

* yolov5 update get mat data api

* yolov5 check cuda preprocess args

* refactor cuda function name

* yolo cuda preprocess padding value configurable

* yolov5 release cuda memory

* cuda preprocess pybind api update

* move use_cuda_preprocessing option to yolov5 model

* yolov5lite cuda preprocessing

* yolov6 cuda preprocessing

* yolov7 cuda preprocessing

* yolov7_e2e cuda preprocessing

* remove cuda preprocessing in runtime option

* refine log and cmake variable name

* fix model runtime ptr type

Co-authored-by: Jason <jiangjiajun@baidu.com>
2022-10-19 16:04:58 +08:00

74 lines
3.6 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindYOLOv5(pybind11::module& m) {
pybind11::class_<vision::detection::YOLOv5, FastDeployModel>(m, "YOLOv5")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>())
.def("predict",
[](vision::detection::YOLOv5& self, pybind11::array& data,
float conf_threshold, float nms_iou_threshold) {
auto mat = PyArrayToCvMat(data);
vision::DetectionResult res;
self.Predict(&mat, &res, conf_threshold, nms_iou_threshold);
return res;
})
.def("use_cuda_preprocessing",
[](vision::detection::YOLOv5& self, int max_image_size) {
self.UseCudaPreprocessing(max_image_size);
})
.def_static("preprocess",
[](pybind11::array& data, const std::vector<int>& size,
const std::vector<float> padding_value, bool is_mini_pad,
bool is_no_pad, bool is_scale_up, int stride, float max_wh,
bool multi_label) {
auto mat = PyArrayToCvMat(data);
fastdeploy::vision::Mat fd_mat(mat);
FDTensor output;
std::map<std::string, std::array<float, 2>> im_info;
vision::detection::YOLOv5::Preprocess(
&fd_mat, &output, &im_info, size, padding_value,
is_mini_pad, is_no_pad, is_scale_up, stride, max_wh,
multi_label);
return make_pair(TensorToPyArray(output), im_info);
})
.def_static(
"postprocess",
[](std::vector<pybind11::array> infer_results,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold, bool multi_label,
float max_wh) {
std::vector<FDTensor> fd_infer_results(infer_results.size());
PyArrayToTensorList(infer_results, &fd_infer_results, true);
vision::DetectionResult result;
vision::detection::YOLOv5::Postprocess(
fd_infer_results, &result, im_info, conf_threshold,
nms_iou_threshold, multi_label, max_wh);
return result;
})
.def_readwrite("size", &vision::detection::YOLOv5::size_)
.def_readwrite("padding_value",
&vision::detection::YOLOv5::padding_value_)
.def_readwrite("is_mini_pad", &vision::detection::YOLOv5::is_mini_pad_)
.def_readwrite("is_no_pad", &vision::detection::YOLOv5::is_no_pad_)
.def_readwrite("is_scale_up", &vision::detection::YOLOv5::is_scale_up_)
.def_readwrite("stride", &vision::detection::YOLOv5::stride_)
.def_readwrite("max_wh", &vision::detection::YOLOv5::max_wh_)
.def_readwrite("multi_label", &vision::detection::YOLOv5::multi_label_);
}
} // namespace fastdeploy