Files
FastDeploy/fastdeploy/runtime.cc
DefTruth a51e5a6e55 [Android] Add android aar package (#416)
* [Android] Add Android build docs and demo (#26)

* [Backend] Add override flag to lite backend

* [Docs] Add Android C++ SDK build docs

* [Doc] fix android_build_docs typos

* Update CMakeLists.txt

* Update android.md

* [Doc] Add PicoDet Android demo docs

* [Doc] Update PicoDet Andorid demo docs

* [Doc] Update PaddleClasModel Android demo docs

* [Doc] Update fastdeploy android jni docs

* [Doc] Update fastdeploy android jni usage docs

* [Android] init fastdeploy android jar package

* [Backend] support int8 option for lite backend

* [Model] add Backend::Lite to paddle model

* [Backend] use CopyFromCpu for lite backend.

* [Android] package jni srcs and java api into aar

* Update infer.cc

* Update infer.cc

* [Android] Update package build.gradle

* [Android] Update android app examples

* [Android] update android detection app
2022-10-26 17:01:14 +08:00

682 lines
24 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/runtime.h"
#include "fastdeploy/utils/unique_ptr.h"
#include "fastdeploy/utils/utils.h"
#ifdef ENABLE_ORT_BACKEND
#include "fastdeploy/backends/ort/ort_backend.h"
#endif
#ifdef ENABLE_TRT_BACKEND
#include "fastdeploy/backends/tensorrt/trt_backend.h"
#endif
#ifdef ENABLE_PADDLE_BACKEND
#include "fastdeploy/backends/paddle/paddle_backend.h"
#endif
#ifdef ENABLE_POROS_BACKEND
#include "fastdeploy/backends/poros/poros_backend.h"
#endif
#ifdef ENABLE_OPENVINO_BACKEND
#include "fastdeploy/backends/openvino/ov_backend.h"
#endif
#ifdef ENABLE_LITE_BACKEND
#include "fastdeploy/backends/lite/lite_backend.h"
#endif
namespace fastdeploy {
std::vector<Backend> GetAvailableBackends() {
std::vector<Backend> backends;
#ifdef ENABLE_ORT_BACKEND
backends.push_back(Backend::ORT);
#endif
#ifdef ENABLE_TRT_BACKEND
backends.push_back(Backend::TRT);
#endif
#ifdef ENABLE_PADDLE_BACKEND
backends.push_back(Backend::PDINFER);
#endif
#ifdef ENABLE_POROS_BACKEND
backends.push_back(Backend::POROS);
#endif
#ifdef ENABLE_OPENVINO_BACKEND
backends.push_back(Backend::OPENVINO);
#endif
#ifdef ENABLE_LITE_BACKEND
backends.push_back(Backend::LITE);
#endif
return backends;
}
bool IsBackendAvailable(const Backend& backend) {
std::vector<Backend> backends = GetAvailableBackends();
for (size_t i = 0; i < backends.size(); ++i) {
if (backend == backends[i]) {
return true;
}
}
return false;
}
std::string Str(const Backend& b) {
if (b == Backend::ORT) {
return "Backend::ORT";
} else if (b == Backend::TRT) {
return "Backend::TRT";
} else if (b == Backend::PDINFER) {
return "Backend::PDINFER";
} else if (b == Backend::POROS) {
return "Backend::POROS";
} else if (b == Backend::OPENVINO) {
return "Backend::OPENVINO";
} else if (b == Backend::LITE) {
return "Backend::LITE";
}
return "UNKNOWN-Backend";
}
std::string Str(const ModelFormat& f) {
if (f == ModelFormat::PADDLE) {
return "ModelFormat::PADDLE";
} else if (f == ModelFormat::ONNX) {
return "ModelFormat::ONNX";
} else if (f == ModelFormat::TORCHSCRIPT) {
return "ModelFormat::TORCHSCRIPT";
}
return "UNKNOWN-ModelFormat";
}
std::ostream& operator<<(std::ostream& out, const Backend& backend) {
if (backend == Backend::ORT) {
out << "Backend::ORT";
} else if (backend == Backend::TRT) {
out << "Backend::TRT";
} else if (backend == Backend::PDINFER) {
out << "Backend::PDINFER";
} else if (backend == Backend::OPENVINO) {
out << "Backend::OPENVINO";
} else if (backend == Backend::POROS) {
out << "Backend::POROS";
} else if (backend == Backend::LITE) {
out << "Backend::LITE";
}
out << "UNKNOWN-Backend";
return out;
}
std::ostream& operator<<(std::ostream& out, const ModelFormat& format) {
if (format == ModelFormat::PADDLE) {
out << "ModelFormat::PADDLE";
} else if (format == ModelFormat::ONNX) {
out << "ModelFormat::ONNX";
} else if (format == ModelFormat::TORCHSCRIPT) {
out << "ModelFormat::TORCHSCRIPT";
}
out << "UNKNOWN-ModelFormat";
return out;
}
bool CheckModelFormat(const std::string& model_file,
const ModelFormat& model_format) {
if (model_format == ModelFormat::PADDLE) {
if (model_file.size() < 8 ||
model_file.substr(model_file.size() - 8, 8) != ".pdmodel") {
FDERROR << "With model format of ModelFormat::PADDLE, the model file "
"should ends with `.pdmodel`, but now it's "
<< model_file << std::endl;
return false;
}
} else if (model_format == ModelFormat::ONNX) {
if (model_file.size() < 5 ||
model_file.substr(model_file.size() - 5, 5) != ".onnx") {
FDERROR << "With model format of ModelFormat::ONNX, the model file "
"should ends with `.onnx`, but now it's "
<< model_file << std::endl;
return false;
}
} else if (model_format == ModelFormat::TORCHSCRIPT) {
if (model_file.size() < 3 ||
model_file.substr(model_file.size() - 3, 3) != ".pt") {
FDERROR << "With model format of ModelFormat::TORCHSCRIPT, the model file "
"should ends with `.pt`, but now it's "
<< model_file << std::endl;
return false;
}
} else {
FDERROR << "Only support model format with frontend ModelFormat::PADDLE / "
"ModelFormat::ONNX / ModelFormat::TORCHSCRIPT."
<< std::endl;
return false;
}
return true;
}
ModelFormat GuessModelFormat(const std::string& model_file) {
if (model_file.size() > 8 &&
model_file.substr(model_file.size() - 8, 8) == ".pdmodel") {
FDINFO << "Model Format: PaddlePaddle." << std::endl;
return ModelFormat::PADDLE;
} else if (model_file.size() > 5 &&
model_file.substr(model_file.size() - 5, 5) == ".onnx") {
FDINFO << "Model Format: ONNX." << std::endl;
return ModelFormat::ONNX;
} else if (model_file.size() > 3 &&
model_file.substr(model_file.size() - 3, 3) == ".pt") {
FDINFO << "Model Format: Torchscript." << std::endl;
return ModelFormat::TORCHSCRIPT;
}
FDERROR << "Cannot guess which model format you are using, please set "
"RuntimeOption::model_format manually."
<< std::endl;
return ModelFormat::PADDLE;
}
void RuntimeOption::SetModelPath(const std::string& model_path,
const std::string& params_path,
const ModelFormat& format) {
if (format == ModelFormat::PADDLE) {
model_file = model_path;
params_file = params_path;
model_format = ModelFormat::PADDLE;
} else if (format == ModelFormat::ONNX) {
model_file = model_path;
model_format = ModelFormat::ONNX;
} else if (format == ModelFormat::TORCHSCRIPT) {
model_file = model_path;
model_format = ModelFormat::TORCHSCRIPT;
} else {
FDASSERT(
false,
"The model format only can be ModelFormat::PADDLE/ModelFormat::ONNX/ModelFormat::TORCHSCRIPT.");
}
}
void RuntimeOption::UseGpu(int gpu_id) {
#ifdef WITH_GPU
device = Device::GPU;
device_id = gpu_id;
#else
FDWARNING << "The FastDeploy didn't compile with GPU, will force to use CPU."
<< std::endl;
device = Device::CPU;
#endif
}
void RuntimeOption::UseCpu() { device = Device::CPU; }
void RuntimeOption::SetExternalStream(void* external_stream) {
external_stream_ = external_stream;
}
void RuntimeOption::SetCpuThreadNum(int thread_num) {
FDASSERT(thread_num > 0, "The thread_num must be greater than 0.");
cpu_thread_num = thread_num;
}
void RuntimeOption::SetOrtGraphOptLevel(int level) {
std::vector<int> supported_level{-1, 0, 1, 2};
auto valid_level = std::find(supported_level.begin(), supported_level.end(), level) != supported_level.end();
FDASSERT(valid_level, "The level must be -1, 0, 1, 2.");
ort_graph_opt_level = level;
}
// use paddle inference backend
void RuntimeOption::UsePaddleBackend() {
#ifdef ENABLE_PADDLE_BACKEND
backend = Backend::PDINFER;
#else
FDASSERT(false, "The FastDeploy didn't compile with Paddle Inference.");
#endif
}
// use onnxruntime backend
void RuntimeOption::UseOrtBackend() {
#ifdef ENABLE_ORT_BACKEND
backend = Backend::ORT;
#else
FDASSERT(false, "The FastDeploy didn't compile with OrtBackend.");
#endif
}
// use poros backend
void RuntimeOption::UsePorosBackend() {
#ifdef ENABLE_POROS_BACKEND
backend = Backend::POROS;
#else
FDASSERT(false, "The FastDeploy didn't compile with PorosBackend.");
#endif
}
void RuntimeOption::UseTrtBackend() {
#ifdef ENABLE_TRT_BACKEND
backend = Backend::TRT;
#else
FDASSERT(false, "The FastDeploy didn't compile with TrtBackend.");
#endif
}
void RuntimeOption::UseOpenVINOBackend() {
#ifdef ENABLE_OPENVINO_BACKEND
backend = Backend::OPENVINO;
#else
FDASSERT(false, "The FastDeploy didn't compile with OpenVINO.");
#endif
}
void RuntimeOption::UseLiteBackend() {
#ifdef ENABLE_LITE_BACKEND
backend = Backend::LITE;
#else
FDASSERT(false, "The FastDeploy didn't compile with Paddle Lite.");
#endif
}
void RuntimeOption::SetPaddleMKLDNN(bool pd_mkldnn) {
pd_enable_mkldnn = pd_mkldnn;
}
void RuntimeOption::DeletePaddleBackendPass(const std::string& pass_name) {
pd_delete_pass_names.push_back(pass_name);
}
void RuntimeOption::EnablePaddleLogInfo() { pd_enable_log_info = true; }
void RuntimeOption::DisablePaddleLogInfo() { pd_enable_log_info = false; }
void RuntimeOption::EnablePaddleToTrt() {
FDASSERT(backend == Backend::TRT, "Should call UseTrtBackend() before call EnablePaddleToTrt().");
#ifdef ENABLE_PADDLE_BACKEND
FDINFO << "While using TrtBackend with EnablePaddleToTrt, FastDeploy will change to use Paddle Inference Backend." << std::endl;
backend = Backend::PDINFER;
pd_enable_trt = true;
#else
FDASSERT(false, "While using TrtBackend with EnablePaddleToTrt, require the FastDeploy is compiled with Paddle Inference Backend, please rebuild your FastDeploy.");
#endif
}
void RuntimeOption::SetPaddleMKLDNNCacheSize(int size) {
FDASSERT(size > 0, "Parameter size must greater than 0.");
pd_mkldnn_cache_size = size;
}
void RuntimeOption::EnableLiteFP16() {
lite_enable_fp16 = true;
}
void RuntimeOption::DisableLiteFP16() {
lite_enable_fp16 = false;
}
void RuntimeOption::EnableLiteInt8() {
lite_enable_int8 = true;
}
void RuntimeOption::DisableLiteInt8() {
lite_enable_int8 = false;
}
void RuntimeOption::SetLitePowerMode(LitePowerMode mode) {
lite_power_mode = mode;
}
void RuntimeOption::SetLiteOptimizedModelDir(
const std::string& optimized_model_dir) {
lite_optimized_model_dir = optimized_model_dir;
}
void RuntimeOption::SetTrtInputShape(const std::string& input_name,
const std::vector<int32_t>& min_shape,
const std::vector<int32_t>& opt_shape,
const std::vector<int32_t>& max_shape) {
trt_min_shape[input_name].clear();
trt_max_shape[input_name].clear();
trt_opt_shape[input_name].clear();
trt_min_shape[input_name].assign(min_shape.begin(), min_shape.end());
if (opt_shape.size() == 0) {
trt_opt_shape[input_name].assign(min_shape.begin(), min_shape.end());
} else {
trt_opt_shape[input_name].assign(opt_shape.begin(), opt_shape.end());
}
if (max_shape.size() == 0) {
trt_max_shape[input_name].assign(min_shape.begin(), min_shape.end());
} else {
trt_max_shape[input_name].assign(max_shape.begin(), max_shape.end());
}
}
void RuntimeOption::SetTrtMaxWorkspaceSize(size_t max_workspace_size) {
trt_max_workspace_size = max_workspace_size;
}
void RuntimeOption::EnableTrtFP16() { trt_enable_fp16 = true; }
void RuntimeOption::DisableTrtFP16() { trt_enable_fp16 = false; }
void RuntimeOption::EnablePinnedMemory() { enable_pinned_memory = true; }
void RuntimeOption::DisablePinnedMemory() { enable_pinned_memory = false; }
void RuntimeOption::SetTrtCacheFile(const std::string& cache_file_path) {
trt_serialize_file = cache_file_path;
}
bool Runtime::Compile(std::vector<std::vector<FDTensor>>& prewarm_tensors,
const RuntimeOption& _option) {
#ifdef ENABLE_POROS_BACKEND
option = _option;
auto poros_option = PorosBackendOption();
poros_option.use_gpu = (option.device == Device::GPU) ? true : false;
poros_option.gpu_id = option.device_id;
poros_option.long_to_int = option.long_to_int;
poros_option.use_nvidia_tf32 = option.use_nvidia_tf32;
poros_option.unconst_ops_thres = option.unconst_ops_thres;
poros_option.poros_file = option.poros_file;
poros_option.is_dynamic = option.is_dynamic;
poros_option.enable_fp16 = option.trt_enable_fp16;
poros_option.max_batch_size = option.trt_max_batch_size;
poros_option.max_workspace_size = option.trt_max_workspace_size;
FDASSERT(option.model_format == ModelFormat::TORCHSCRIPT,
"PorosBackend only support model format of ModelFormat::TORCHSCRIPT.");
backend_ = utils::make_unique<PorosBackend>();
auto casted_backend = dynamic_cast<PorosBackend*>(backend_.get());
FDASSERT(
casted_backend->Compile(option.model_file, prewarm_tensors, poros_option),
"Load model from Torchscript failed while initliazing PorosBackend.");
#else
FDASSERT(false,
"PorosBackend is not available, please compiled with "
"ENABLE_POROS_BACKEND=ON.");
#endif
return true;
}
void RuntimeOption::EnablePaddleTrtCollectShape() {
pd_collect_shape = true;
}
void RuntimeOption::DisablePaddleTrtCollectShape() {
pd_collect_shape = false;
}
bool Runtime::Init(const RuntimeOption& _option) {
option = _option;
if (option.model_format == ModelFormat::AUTOREC) {
option.model_format = GuessModelFormat(_option.model_file);
}
if (option.backend == Backend::UNKNOWN) {
if (IsBackendAvailable(Backend::ORT)) {
option.backend = Backend::ORT;
} else if (IsBackendAvailable(Backend::PDINFER)) {
option.backend = Backend::PDINFER;
} else if (IsBackendAvailable(Backend::POROS)) {
option.backend = Backend::POROS;
} else if (IsBackendAvailable(Backend::OPENVINO)) {
option.backend = Backend::OPENVINO;
} else {
FDERROR << "Please define backend in RuntimeOption, current it's "
"Backend::UNKNOWN."
<< std::endl;
return false;
}
}
if (option.backend == Backend::ORT) {
FDASSERT(option.device == Device::CPU || option.device == Device::GPU,
"Backend::ORT only supports Device::CPU/Device::GPU.");
CreateOrtBackend();
FDINFO << "Runtime initialized with Backend::ORT in " << Str(option.device)
<< "." << std::endl;
} else if (option.backend == Backend::TRT) {
FDASSERT(option.device == Device::GPU,
"Backend::TRT only supports Device::GPU.");
CreateTrtBackend();
FDINFO << "Runtime initialized with Backend::TRT in " << Str(option.device)
<< "." << std::endl;
} else if (option.backend == Backend::PDINFER) {
FDASSERT(option.device == Device::CPU || option.device == Device::GPU,
"Backend::TRT only supports Device::CPU/Device::GPU.");
FDASSERT(
option.model_format == ModelFormat::PADDLE,
"Backend::PDINFER only supports model format of ModelFormat::PADDLE.");
CreatePaddleBackend();
FDINFO << "Runtime initialized with Backend::PDINFER in "
<< Str(option.device) << "." << std::endl;
} else if (option.backend == Backend::POROS) {
FDASSERT(option.device == Device::CPU || option.device == Device::GPU,
"Backend::POROS only supports Device::CPU/Device::GPU.");
FDASSERT(
option.model_format == ModelFormat::TORCHSCRIPT,
"Backend::POROS only supports model format of ModelFormat::TORCHSCRIPT.");
FDINFO << "Runtime initialized with Backend::POROS in "
<< Str(option.device) << "." << std::endl;
return true;
} else if (option.backend == Backend::OPENVINO) {
FDASSERT(option.device == Device::CPU,
"Backend::OPENVINO only supports Device::CPU");
CreateOpenVINOBackend();
FDINFO << "Runtime initialized with Backend::OPENVINO in "
<< Str(option.device) << "." << std::endl;
} else if (option.backend == Backend::LITE) {
FDASSERT(option.device == Device::CPU,
"Backend::LITE only supports Device::CPU");
CreateLiteBackend();
FDINFO << "Runtime initialized with Backend::LITE in " << Str(option.device)
<< "." << std::endl;
} else {
FDERROR << "Runtime only support "
"Backend::ORT/Backend::TRT/Backend::PDINFER/Backend::POROS as "
"backend now."
<< std::endl;
return false;
}
return true;
}
TensorInfo Runtime::GetInputInfo(int index) {
return backend_->GetInputInfo(index);
}
TensorInfo Runtime::GetOutputInfo(int index) {
return backend_->GetOutputInfo(index);
}
std::vector<TensorInfo> Runtime::GetInputInfos() {
return backend_->GetInputInfos();
}
std::vector<TensorInfo> Runtime::GetOutputInfos() {
return backend_->GetOutputInfos();
}
bool Runtime::Infer(std::vector<FDTensor>& input_tensors,
std::vector<FDTensor>* output_tensors) {
return backend_->Infer(input_tensors, output_tensors);
}
void Runtime::CreatePaddleBackend() {
#ifdef ENABLE_PADDLE_BACKEND
auto pd_option = PaddleBackendOption();
pd_option.enable_mkldnn = option.pd_enable_mkldnn;
pd_option.enable_log_info = option.pd_enable_log_info;
pd_option.mkldnn_cache_size = option.pd_mkldnn_cache_size;
pd_option.use_gpu = (option.device == Device::GPU) ? true : false;
pd_option.gpu_id = option.device_id;
pd_option.delete_pass_names = option.pd_delete_pass_names;
pd_option.cpu_thread_num = option.cpu_thread_num;
pd_option.enable_pinned_memory = option.enable_pinned_memory;
pd_option.external_stream_ = option.external_stream_;
#ifdef ENABLE_TRT_BACKEND
if (pd_option.use_gpu && option.pd_enable_trt) {
pd_option.enable_trt = true;
pd_option.collect_shape = option.pd_collect_shape;
auto trt_option = TrtBackendOption();
trt_option.gpu_id = option.device_id;
trt_option.enable_fp16 = option.trt_enable_fp16;
trt_option.max_batch_size = option.trt_max_batch_size;
trt_option.max_workspace_size = option.trt_max_workspace_size;
trt_option.max_shape = option.trt_max_shape;
trt_option.min_shape = option.trt_min_shape;
trt_option.opt_shape = option.trt_opt_shape;
trt_option.serialize_file = option.trt_serialize_file;
trt_option.enable_pinned_memory = option.enable_pinned_memory;
pd_option.trt_option = trt_option;
}
#endif
FDASSERT(option.model_format == ModelFormat::PADDLE,
"PaddleBackend only support model format of ModelFormat::PADDLE.");
backend_ = utils::make_unique<PaddleBackend>();
auto casted_backend = dynamic_cast<PaddleBackend*>(backend_.get());
FDASSERT(casted_backend->InitFromPaddle(option.model_file, option.params_file,
pd_option),
"Load model from Paddle failed while initliazing PaddleBackend.");
#else
FDASSERT(false,
"PaddleBackend is not available, please compiled with "
"ENABLE_PADDLE_BACKEND=ON.");
#endif
}
void Runtime::CreateOpenVINOBackend() {
#ifdef ENABLE_OPENVINO_BACKEND
auto ov_option = OpenVINOBackendOption();
ov_option.cpu_thread_num = option.cpu_thread_num;
FDASSERT(option.model_format == ModelFormat::PADDLE ||
option.model_format == ModelFormat::ONNX,
"OpenVINOBackend only support model format of ModelFormat::PADDLE / "
"ModelFormat::ONNX.");
backend_ = utils::make_unique<OpenVINOBackend>();
auto casted_backend = dynamic_cast<OpenVINOBackend*>(backend_.get());
if (option.model_format == ModelFormat::ONNX) {
FDASSERT(casted_backend->InitFromOnnx(option.model_file, ov_option),
"Load model from ONNX failed while initliazing OrtBackend.");
} else {
FDASSERT(casted_backend->InitFromPaddle(option.model_file,
option.params_file, ov_option),
"Load model from Paddle failed while initliazing OrtBackend.");
}
#else
FDASSERT(false,
"OpenVINOBackend is not available, please compiled with "
"ENABLE_OPENVINO_BACKEND=ON.");
#endif
}
void Runtime::CreateOrtBackend() {
#ifdef ENABLE_ORT_BACKEND
auto ort_option = OrtBackendOption();
ort_option.graph_optimization_level = option.ort_graph_opt_level;
ort_option.intra_op_num_threads = option.cpu_thread_num;
ort_option.inter_op_num_threads = option.ort_inter_op_num_threads;
ort_option.execution_mode = option.ort_execution_mode;
ort_option.use_gpu = (option.device == Device::GPU) ? true : false;
ort_option.gpu_id = option.device_id;
ort_option.external_stream_ = option.external_stream_;
// TODO(jiangjiajun): inside usage, maybe remove this later
ort_option.remove_multiclass_nms_ = option.remove_multiclass_nms_;
ort_option.custom_op_info_ = option.custom_op_info_;
FDASSERT(option.model_format == ModelFormat::PADDLE ||
option.model_format == ModelFormat::ONNX,
"OrtBackend only support model format of ModelFormat::PADDLE / "
"ModelFormat::ONNX.");
backend_ = utils::make_unique<OrtBackend>();
auto casted_backend = dynamic_cast<OrtBackend*>(backend_.get());
if (option.model_format == ModelFormat::ONNX) {
FDASSERT(casted_backend->InitFromOnnx(option.model_file, ort_option),
"Load model from ONNX failed while initliazing OrtBackend.");
} else {
FDASSERT(casted_backend->InitFromPaddle(option.model_file,
option.params_file, ort_option),
"Load model from Paddle failed while initliazing OrtBackend.");
}
#else
FDASSERT(false,
"OrtBackend is not available, please compiled with "
"ENABLE_ORT_BACKEND=ON.");
#endif
}
void Runtime::CreateTrtBackend() {
#ifdef ENABLE_TRT_BACKEND
auto trt_option = TrtBackendOption();
trt_option.gpu_id = option.device_id;
trt_option.enable_fp16 = option.trt_enable_fp16;
trt_option.enable_int8 = option.trt_enable_int8;
trt_option.max_batch_size = option.trt_max_batch_size;
trt_option.max_workspace_size = option.trt_max_workspace_size;
trt_option.max_shape = option.trt_max_shape;
trt_option.min_shape = option.trt_min_shape;
trt_option.opt_shape = option.trt_opt_shape;
trt_option.serialize_file = option.trt_serialize_file;
trt_option.enable_pinned_memory = option.enable_pinned_memory;
trt_option.external_stream_ = option.external_stream_;
// TODO(jiangjiajun): inside usage, maybe remove this later
trt_option.remove_multiclass_nms_ = option.remove_multiclass_nms_;
trt_option.custom_op_info_ = option.custom_op_info_;
FDASSERT(option.model_format == ModelFormat::PADDLE ||
option.model_format == ModelFormat::ONNX,
"TrtBackend only support model format of ModelFormat::PADDLE / "
"ModelFormat::ONNX.");
backend_ = utils::make_unique<TrtBackend>();
auto casted_backend = dynamic_cast<TrtBackend*>(backend_.get());
if (option.model_format == ModelFormat::ONNX) {
FDASSERT(casted_backend->InitFromOnnx(option.model_file, trt_option),
"Load model from ONNX failed while initliazing TrtBackend.");
} else {
FDASSERT(casted_backend->InitFromPaddle(option.model_file,
option.params_file, trt_option),
"Load model from Paddle failed while initliazing TrtBackend.");
}
#else
FDASSERT(false,
"TrtBackend is not available, please compiled with "
"ENABLE_TRT_BACKEND=ON.");
#endif
}
void Runtime::CreateLiteBackend() {
#ifdef ENABLE_LITE_BACKEND
auto lite_option = LiteBackendOption();
lite_option.threads = option.cpu_thread_num;
lite_option.enable_int8 = option.lite_enable_int8;
lite_option.enable_fp16 = option.lite_enable_fp16;
lite_option.power_mode = static_cast<int>(option.lite_power_mode);
lite_option.optimized_model_dir = option.lite_optimized_model_dir;
FDASSERT(option.model_format == ModelFormat::PADDLE,
"LiteBackend only support model format of ModelFormat::PADDLE");
backend_ = utils::make_unique<LiteBackend>();
auto casted_backend = dynamic_cast<LiteBackend*>(backend_.get());
FDASSERT(casted_backend->InitFromPaddle(option.model_file, option.params_file,
lite_option),
"Load model from nb file failed while initializing LiteBackend.");
#else
FDASSERT(false,
"LiteBackend is not available, please compiled with "
"ENABLE_LITE_BACKEND=ON.");
#endif
}
} // namespace fastdeploy