mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 4d2fbcb030
			
		
	
	4d2fbcb030
	
	
	
		
			
			* add ppcls benchmark * add ppcls benchmark * add ppcls benchmark * add ppcls benchmark * fixed txt path * resolve conflict * resolve conflict * deal with comments * Add enable_trt_fp16 option * Add OV backend for seg and det * fixed valid backends in ppdet * fixed valid backends in yolo * add copyright and rm Chinese Notes * add ppdet&ppseg&yolo benchmark * add cpu/gpu mem info * Add benchmark readme * fixed bug Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			196 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| #
 | |
| # Licensed under the Apache License, Version 2.0 (the "License");
 | |
| # you may not use this file except in compliance with the License.
 | |
| # You may obtain a copy of the License at
 | |
| #
 | |
| #     http://www.apache.org/licenses/LICENSE-2.0
 | |
| #
 | |
| # Unless required by applicable law or agreed to in writing, software
 | |
| # distributed under the License is distributed on an "AS IS" BASIS,
 | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| # See the License for the specific language governing permissions and
 | |
| # limitations under the License.
 | |
| 
 | |
| import fastdeploy as fd
 | |
| import cv2
 | |
| import os
 | |
| import numpy as np
 | |
| import datetime
 | |
| import json
 | |
| import pynvml
 | |
| import psutil
 | |
| import GPUtil
 | |
| import time
 | |
| 
 | |
| 
 | |
| def parse_arguments():
 | |
|     import argparse
 | |
|     import ast
 | |
|     parser = argparse.ArgumentParser()
 | |
|     parser.add_argument(
 | |
|         "--model", required=True, help="Path of PaddleDetection model.")
 | |
|     parser.add_argument(
 | |
|         "--image", type=str, required=False, help="Path of test image file.")
 | |
|     parser.add_argument(
 | |
|         "--cpu_num_thread",
 | |
|         type=int,
 | |
|         default=8,
 | |
|         help="default number of cpu thread.")
 | |
|     parser.add_argument(
 | |
|         "--device_id", type=int, default=0, help="device(gpu) id")
 | |
|     parser.add_argument(
 | |
|         "--iter_num",
 | |
|         required=True,
 | |
|         type=int,
 | |
|         default=300,
 | |
|         help="number of iterations for computing performace.")
 | |
|     parser.add_argument(
 | |
|         "--device",
 | |
|         default="cpu",
 | |
|         help="Type of inference device, support 'cpu' or 'gpu'.")
 | |
|     parser.add_argument(
 | |
|         "--backend",
 | |
|         type=str,
 | |
|         default="ort",
 | |
|         help="inference backend, ort, ov, trt, paddle.")
 | |
|     parser.add_argument(
 | |
|         "--enable_trt_fp16",
 | |
|         type=bool,
 | |
|         default=False,
 | |
|         help="whether enable fp16 in trt backend")
 | |
|     args = parser.parse_args()
 | |
|     return args
 | |
| 
 | |
| 
 | |
| def build_option(args):
 | |
|     option = fd.RuntimeOption()
 | |
|     device = args.device
 | |
|     backend = args.backend
 | |
|     option.set_cpu_thread_num(args.cpu_num_thread)
 | |
|     if device == "gpu":
 | |
|         option.use_gpu(args.device_id)
 | |
| 
 | |
|     if backend == "trt":
 | |
|         assert device == "gpu", "the trt backend need device==gpu"
 | |
|         option.use_trt_backend()
 | |
|         if args.enable_trt_fp16:
 | |
|             option.enable_trt_fp16()
 | |
|     elif backend == "ov":
 | |
|         assert device == "cpu", "the openvino backend need device==cpu"
 | |
|         option.use_openvino_backend()
 | |
|     elif backend == "paddle":
 | |
|         option.use_paddle_backend()
 | |
|     elif backend == "ort":
 | |
|         option.use_ort_backend()
 | |
|     else:
 | |
|         print("%s is an unsupported backend" % backend)
 | |
| 
 | |
|     return option
 | |
| 
 | |
| 
 | |
| def get_current_memory_mb(gpu_id=None):
 | |
|     pid = os.getpid()
 | |
|     p = psutil.Process(pid)
 | |
|     info = p.memory_full_info()
 | |
|     cpu_mem = info.uss / 1024. / 1024.
 | |
|     gpu_mem = 0
 | |
|     if gpu_id is not None:
 | |
|         pynvml.nvmlInit()
 | |
|         handle = pynvml.nvmlDeviceGetHandleByIndex(0)
 | |
|         meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
 | |
|         gpu_mem = meminfo.used / 1024. / 1024.
 | |
|     return cpu_mem, gpu_mem
 | |
| 
 | |
| 
 | |
| def get_current_gputil(gpu_id):
 | |
|     GPUs = GPUtil.getGPUs()
 | |
|     gpu_load = GPUs[gpu_id].load
 | |
|     return gpu_load
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
| 
 | |
|     args = parse_arguments()
 | |
|     option = build_option(args)
 | |
|     model_file = os.path.join(args.model, "model.pdmodel")
 | |
|     params_file = os.path.join(args.model, "model.pdiparams")
 | |
|     config_file = os.path.join(args.model, "infer_cfg.yml")
 | |
| 
 | |
|     gpu_id = args.device_id
 | |
|     end2end_statis = list()
 | |
|     cpu_mem = list()
 | |
|     gpu_mem = list()
 | |
|     gpu_util = list()
 | |
|     if args.device == "cpu":
 | |
|         file_path = args.model + "_model_" + args.backend + "_" + \
 | |
|             args.device + "_" + str(args.cpu_num_thread) + ".txt"
 | |
|     else:
 | |
|         if args.enable_trt_fp16:
 | |
|             file_path = args.model + "_model_" + args.backend + "_fp16_" + args.device + ".txt"
 | |
|         else:
 | |
|             file_path = args.model + "_model_" + args.backend + "_" + args.device + ".txt"
 | |
|     f = open(file_path, "w")
 | |
|     f.writelines("===={}====: \n".format(file_path.split("/")[1][:-4]))
 | |
| 
 | |
|     try:
 | |
|         if "ppyoloe" in args.model:
 | |
|             model = fd.vision.detection.PPYOLOE(
 | |
|                 model_file, params_file, config_file, runtime_option=option)
 | |
|         elif "picodet" in args.model:
 | |
|             model = fd.vision.detection.PicoDet(
 | |
|                 model_file, params_file, config_file, runtime_option=option)
 | |
|         elif "yolox" in args.model:
 | |
|             model = fd.vision.detection.PaddleYOLOX(
 | |
|                 model_file, params_file, config_file, runtime_option=option)
 | |
|         elif "yolov3" in args.model:
 | |
|             model = fd.vision.detection.YOLOv3(
 | |
|                 model_file, params_file, config_file, runtime_option=option)
 | |
|         elif "ppyolo_r50vd_dcn_1x_coco" in args.model or "ppyolov2_r101vd_dcn_365e_coco" in args.model:
 | |
|             model = fd.vision.detection.PPYOLO(
 | |
|                 model_file, params_file, config_file, runtime_option=option)
 | |
|         elif "faster_rcnn" in args.model:
 | |
|             model = fd.vision.detection.FasterRCNN(
 | |
|                 model_file, params_file, config_file, runtime_option=option)
 | |
|         else:
 | |
|             raise Exception("model {} not support now in ppdet series".format(
 | |
|                 args.model))
 | |
|         model.enable_record_time_of_runtime()
 | |
|         for i in range(args.iter_num):
 | |
|             im = cv2.imread(args.image)
 | |
|             start = time.time()
 | |
|             result = model.predict(im)
 | |
|             end2end_statis.append(time.time() - start)
 | |
|             gpu_util.append(get_current_gputil(gpu_id))
 | |
|             cm, gm = get_current_memory_mb(gpu_id)
 | |
|             cpu_mem.append(cm)
 | |
|             gpu_mem.append(gm)
 | |
| 
 | |
|         runtime_statis = model.print_statis_info_of_runtime()
 | |
| 
 | |
|         warmup_iter = args.iter_num // 5
 | |
|         repeat_iter = args.iter_num - warmup_iter
 | |
|         end2end_statis_repeat = end2end_statis[warmup_iter:]
 | |
|         cpu_mem_repeat = cpu_mem[warmup_iter:]
 | |
|         gpu_mem_repeat = gpu_mem[warmup_iter:]
 | |
|         gpu_util_repeat = gpu_util[warmup_iter:]
 | |
| 
 | |
|         dump_result = dict()
 | |
|         dump_result["runtime"] = runtime_statis["avg_time"] * 1000
 | |
|         dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
 | |
|         dump_result["cpu_rss_mb"] = np.mean(cpu_mem_repeat)
 | |
|         dump_result["gpu_rss_mb"] = np.mean(gpu_mem_repeat)
 | |
|         dump_result["gpu_util"] = np.mean(gpu_util_repeat)
 | |
| 
 | |
|         f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
 | |
|         f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
 | |
|         f.writelines("cpu_rss_mb: {} \n".format(
 | |
|             str(dump_result["cpu_rss_mb"])))
 | |
|         f.writelines("gpu_rss_mb: {} \n".format(
 | |
|             str(dump_result["gpu_rss_mb"])))
 | |
|         f.writelines("gpu_util: {} \n".format(str(dump_result["gpu_util"])))
 | |
|     except:
 | |
|         f.writelines("!!!!!Infer Failed\n")
 | |
| 
 | |
|     f.close()
 |