Files
FastDeploy/fastdeploy/runtime/backends/paddle/paddle_backend.h
yeliang2258 a509dd8ec1 [Model] Add Paddle3D smoke model (#1766)
* add smoke model

* add 3d vis

* update code

* update doc

* mv paddle3d from detection to perception

* update result for velocity

* update code for CI

* add set input data for TRT backend

* add serving support for smoke model

* update code

* update code

* update code

---------

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-04-14 16:30:56 +08:00

104 lines
3.9 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iostream>
#include <memory>
#include <string>
#include <vector>
#include "fastdeploy/runtime/backends/backend.h"
#include "fastdeploy/runtime/backends/paddle/option.h"
#ifdef ENABLE_PADDLE2ONNX
#include "paddle2onnx/converter.h"
#endif
#include "fastdeploy/utils/unique_ptr.h"
#include "paddle_inference_api.h" // NOLINT
namespace fastdeploy {
// convert FD device to paddle place type
paddle_infer::PlaceType ConvertFDDeviceToPlace(Device device);
// Share memory buffer with paddle_infer::Tensor from fastdeploy::FDTensor
void ShareTensorFromFDTensor(paddle_infer::Tensor* tensor, FDTensor& fd_tensor);
void ShareOutTensorFromFDTensor(paddle_infer::Tensor* tensor,
FDTensor& fd_tensor);
// convert paddle_infer::Tensor to fastdeploy::FDTensor
// if copy_to_fd is true, copy memory data to FDTensor
/// else share memory to FDTensor
void PaddleTensorToFDTensor(std::unique_ptr<paddle_infer::Tensor>& tensor,
FDTensor* fd_tensor, bool copy_to_fd);
// Convert data type from paddle inference to fastdeploy
FDDataType PaddleDataTypeToFD(const paddle_infer::DataType& dtype);
// Convert data type from paddle2onnx::PaddleReader to fastdeploy
FDDataType ReaderDataTypeToFD(int32_t dtype);
class PaddleBackend : public BaseBackend {
public:
PaddleBackend() {}
virtual ~PaddleBackend() = default;
bool Init(const RuntimeOption& option);
bool Infer(std::vector<FDTensor>& inputs, std::vector<FDTensor>* outputs,
bool copy_to_fd = true) override;
int NumInputs() const override { return inputs_desc_.size(); }
int NumOutputs() const override { return outputs_desc_.size(); }
std::unique_ptr<BaseBackend> Clone(RuntimeOption &runtime_option,
void* stream = nullptr,
int device_id = -1) override;
TensorInfo GetInputInfo(int index) override;
TensorInfo GetOutputInfo(int index) override;
std::vector<TensorInfo> GetInputInfos() override;
std::vector<TensorInfo> GetOutputInfos() override;
private:
void BuildOption(const PaddleBackendOption& option);
bool InitFromPaddle(const std::string& model,
const std::string& params,
bool model_from_memory,
const PaddleBackendOption& option = PaddleBackendOption());
void
CollectShapeRun(paddle_infer::Predictor* predictor,
const std::map<std::string, std::vector<int>>& shape,
const std::map<std::string, std::vector<float>>& data) const;
void GetDynamicShapeFromOption(
const PaddleBackendOption& option,
std::map<std::string, std::vector<int>>* max_shape,
std::map<std::string, std::vector<int>>* min_shape,
std::map<std::string, std::vector<int>>* opt_shape) const;
void GetInputDataFromOption(
const PaddleBackendOption& option,
std::map<std::string, std::vector<float>>* max_input_data,
std::map<std::string, std::vector<float>>* min_input_data,
std::map<std::string, std::vector<float>>* opt_input_data) const;
void SetTRTDynamicShapeToConfig(const PaddleBackendOption& option);
PaddleBackendOption option_;
paddle_infer::Config config_;
std::shared_ptr<paddle_infer::Predictor> predictor_;
std::vector<TensorInfo> inputs_desc_;
std::vector<TensorInfo> outputs_desc_;
};
} // namespace fastdeploy