mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Update keypointdetection result docs * Update im.copy() to im in examples * Update new Api, fastdeploy::vision::Visualize to fastdeploy::vision * Update SwapBackgroundSegmentation && SwapBackgroundMatting to SwapBackground * Update README_CN.md * Update README_CN.md * Add comments for swap_background Api
178 lines
7.9 KiB
Python
Executable File
178 lines
7.9 KiB
Python
Executable File
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
import logging
|
|
from ... import c_lib_wrap as C
|
|
import cv2
|
|
|
|
|
|
def vis_detection(im_data,
|
|
det_result,
|
|
labels=[],
|
|
score_threshold=0.0,
|
|
line_size=1,
|
|
font_size=0.5):
|
|
"""Show the visualized results for detection models
|
|
|
|
:param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:param det_result: the result produced by model
|
|
:param labels: (list of str) the visualized result will show the bounding box contain class label
|
|
:param score_threshold: (float) score_threshold threshold for result scores, the bounding box will not be shown if the score is less than score_threshold
|
|
:param line_size: (float) line_size line size for bounding boxes
|
|
:param font_size: (float) font_size font size for text
|
|
:return: (numpy.ndarray) image with visualized results
|
|
"""
|
|
return C.vision.vis_detection(im_data, det_result, labels, score_threshold,
|
|
line_size, font_size)
|
|
|
|
|
|
def vis_keypoint_detection(im_data, keypoint_det_result, conf_threshold=0.5):
|
|
"""Show the visualized results for keypoint detection models
|
|
|
|
:param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:param keypoint_det_result: the result produced by model
|
|
:param conf_threshold: (float) conf_threshold threshold for result scores, the bounding box will not be shown if the score is less than conf_threshold
|
|
:return: (numpy.ndarray) image with visualized results
|
|
"""
|
|
return C.vision.Visualize.vis_keypoint_detection(
|
|
im_data, keypoint_det_result, conf_threshold)
|
|
|
|
|
|
def vis_face_detection(im_data, face_det_result, line_size=1, font_size=0.5):
|
|
"""Show the visualized results for face detection models
|
|
|
|
:param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:param face_det_result: the result produced by model
|
|
:param line_size: (float) line_size line size for bounding boxes
|
|
:param font_size: (float) font_size font size for text
|
|
:return: (numpy.ndarray) image with visualized results
|
|
"""
|
|
return C.vision.vis_face_detection(im_data, face_det_result, line_size,
|
|
font_size)
|
|
|
|
|
|
def vis_face_alignment(im_data, face_align_result, line_size=1):
|
|
"""Show the visualized results for face alignment models
|
|
|
|
:param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:param face_align_result: the result produced by model
|
|
:param line_size: (float)line_size line size for circle point
|
|
:return: (numpy.ndarray) image with visualized results
|
|
"""
|
|
return C.vision.vis_face_alignment(im_data, face_align_result, line_size)
|
|
|
|
|
|
def vis_segmentation(im_data, seg_result, weight=0.5):
|
|
"""Show the visualized results for segmentation models
|
|
|
|
:param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:param seg_result: the result produced by model
|
|
:param weight: (float)transparent weight of visualized result image
|
|
:return: (numpy.ndarray) image with visualized results
|
|
"""
|
|
return C.vision.vis_segmentation(im_data, seg_result, weight)
|
|
|
|
|
|
def vis_matting_alpha(im_data,
|
|
matting_result,
|
|
remove_small_connected_area=False):
|
|
logging.warning(
|
|
"DEPRECATED: fastdeploy.vision.vis_matting_alpha is deprecated, please use fastdeploy.vision.vis_matting function instead."
|
|
)
|
|
return C.vision.vis_matting(im_data, matting_result,
|
|
remove_small_connected_area)
|
|
|
|
|
|
def vis_matting(im_data, matting_result, remove_small_connected_area=False):
|
|
"""Show the visualized results for matting models
|
|
|
|
:param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:param matting_result: the result produced by model
|
|
:param remove_small_connected_area: (bool) if remove_small_connected_area==True, the visualized result will not include the small connected areas
|
|
:return: (numpy.ndarray) image with visualized results
|
|
"""
|
|
return C.vision.vis_matting(im_data, matting_result,
|
|
remove_small_connected_area)
|
|
|
|
|
|
def swap_background_matting(im_data,
|
|
background,
|
|
result,
|
|
remove_small_connected_area=False):
|
|
logging.warning(
|
|
"DEPRECATED: fastdeploy.vision.swap_background_matting is deprecated, please use fastdeploy.vision.swap_background function instead."
|
|
)
|
|
assert isinstance(
|
|
result,
|
|
C.vision.MattingResult), "The result must be MattingResult type"
|
|
return C.vision.Visualize.swap_background_matting(
|
|
im_data, background, result, remove_small_connected_area)
|
|
|
|
|
|
def swap_background_segmentation(im_data, background, background_label,
|
|
result):
|
|
logging.warning(
|
|
"DEPRECATED: fastdeploy.vision.swap_background_segmentation is deprecated, please use fastdeploy.vision.swap_background function instead."
|
|
)
|
|
assert isinstance(
|
|
result, C.vision.
|
|
SegmentationResult), "The result must be SegmentaitonResult type"
|
|
return C.vision.Visualize.swap_background_segmentation(
|
|
im_data, background, background_label, result)
|
|
|
|
|
|
def swap_background(im_data,
|
|
background,
|
|
result,
|
|
remove_small_connected_area=False,
|
|
background_label=0):
|
|
"""Swap the image background with MattingResult or SegmentationResult
|
|
|
|
:param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:param background: (numpy.ndarray)The background image data, 3-D array with layout HWC, BGR format
|
|
:param result: The result produced by model, MattingResult or SegmentationResult
|
|
:param remove_small_connected_area: (bool) If remove_small_connected_area==True, the visualized result will not include the small connected areas
|
|
:param background_label: (int)The background label number in SegmentationResult
|
|
:return: (numpy.ndarray) image with visualized results
|
|
"""
|
|
if isinstance(result, C.vision.MattingResult):
|
|
return C.vision.swap_background(im_data, background, result,
|
|
remove_small_connected_area)
|
|
elif isinstance(result, C.vision.SegmentationResult):
|
|
return C.vision.swap_background(im_data, background, result,
|
|
background_label)
|
|
else:
|
|
raise Exception(
|
|
"Only support result type of MattingResult or SegmentationResult, but now the data type is {}.".
|
|
format(type(result)))
|
|
|
|
|
|
def vis_ppocr(im_data, det_result):
|
|
"""Show the visualized results for ocr models
|
|
|
|
:param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
|
|
:param det_result: the result produced by model
|
|
:return: (numpy.ndarray) image with visualized results
|
|
"""
|
|
return C.vision.vis_ppocr(im_data, det_result)
|
|
|
|
|
|
def vis_mot(im_data, mot_result, score_threshold=0.0, records=None):
|
|
return C.vision.vis_mot(im_data, mot_result, score_threshold, records)
|
|
|
|
|
|
def vis_headpose(im_data, headpose_result, size=50, line_size=1):
|
|
return C.vision.vis_headpose(im_data, headpose_result, size, line_size)
|