mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* cuda normalize and permute, cuda concat * add use cuda option for preprocessor * ppyoloe use cuda normalize * ppseg use cuda normalize * add proclib cuda in processor base * ppcls add use cuda preprocess api * ppcls preprocessor set gpu id * fix pybind * refine ppcls preprocessing use gpu logic * fdtensor device id is -1 by default * refine assert message Co-authored-by: heliqi <1101791222@qq.com>
59 lines
2.0 KiB
C++
59 lines
2.0 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include "fastdeploy/vision/common/processors/transform.h"
|
|
#include "fastdeploy/vision/common/result.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
namespace classification {
|
|
/*! @brief Preprocessor object for PaddleClas serials model.
|
|
*/
|
|
class FASTDEPLOY_DECL PaddleClasPreprocessor {
|
|
public:
|
|
/** \brief Create a preprocessor instance for PaddleClas serials model
|
|
*
|
|
* \param[in] config_file Path of configuration file for deployment, e.g resnet/infer_cfg.yml
|
|
*/
|
|
explicit PaddleClasPreprocessor(const std::string& config_file);
|
|
|
|
/** \brief Process the input image and prepare input tensors for runtime
|
|
*
|
|
* \param[in] images The input image data list, all the elements are returned by cv::imread()
|
|
* \param[in] outputs The output tensors which will feed in runtime
|
|
* \return true if the preprocess successed, otherwise false
|
|
*/
|
|
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs);
|
|
|
|
/** \brief Use GPU to run preprocessing
|
|
*
|
|
* \param[in] gpu_id GPU device id
|
|
*/
|
|
void UseGpu(int gpu_id = -1);
|
|
|
|
private:
|
|
bool BuildPreprocessPipelineFromConfig(const std::string& config_file);
|
|
std::vector<std::shared_ptr<Processor>> processors_;
|
|
bool initialized_ = false;
|
|
bool use_cuda_ = false;
|
|
// GPU device id
|
|
int device_id_ = -1;
|
|
};
|
|
|
|
} // namespace classification
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|