Files
FastDeploy/fastdeploy/vision/classification/ppcls/preprocessor.h
Wang Xinyu a36f5d3396 [Backend] cuda normalize and permute, cuda concat, optimized ppcls, ppdet & ppseg (#546)
* cuda normalize and permute, cuda concat

* add use cuda option for preprocessor

* ppyoloe use cuda normalize

* ppseg use cuda normalize

* add proclib cuda in processor base

* ppcls add use cuda preprocess api

* ppcls preprocessor set gpu id

* fix pybind

* refine ppcls preprocessing use gpu logic

* fdtensor device id is -1 by default

* refine assert message

Co-authored-by: heliqi <1101791222@qq.com>
2022-11-14 18:44:00 +08:00

59 lines
2.0 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/vision/common/processors/transform.h"
#include "fastdeploy/vision/common/result.h"
namespace fastdeploy {
namespace vision {
namespace classification {
/*! @brief Preprocessor object for PaddleClas serials model.
*/
class FASTDEPLOY_DECL PaddleClasPreprocessor {
public:
/** \brief Create a preprocessor instance for PaddleClas serials model
*
* \param[in] config_file Path of configuration file for deployment, e.g resnet/infer_cfg.yml
*/
explicit PaddleClasPreprocessor(const std::string& config_file);
/** \brief Process the input image and prepare input tensors for runtime
*
* \param[in] images The input image data list, all the elements are returned by cv::imread()
* \param[in] outputs The output tensors which will feed in runtime
* \return true if the preprocess successed, otherwise false
*/
bool Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs);
/** \brief Use GPU to run preprocessing
*
* \param[in] gpu_id GPU device id
*/
void UseGpu(int gpu_id = -1);
private:
bool BuildPreprocessPipelineFromConfig(const std::string& config_file);
std::vector<std::shared_ptr<Processor>> processors_;
bool initialized_ = false;
bool use_cuda_ = false;
// GPU device id
int device_id_ = -1;
};
} // namespace classification
} // namespace vision
} // namespace fastdeploy