Files
FastDeploy/fastdeploy/vision/classification/ppcls/preprocessor.cc
Wang Xinyu a36f5d3396 [Backend] cuda normalize and permute, cuda concat, optimized ppcls, ppdet & ppseg (#546)
* cuda normalize and permute, cuda concat

* add use cuda option for preprocessor

* ppyoloe use cuda normalize

* ppseg use cuda normalize

* add proclib cuda in processor base

* ppcls add use cuda preprocess api

* ppcls preprocessor set gpu id

* fix pybind

* refine ppcls preprocessing use gpu logic

* fdtensor device id is -1 by default

* refine assert message

Co-authored-by: heliqi <1101791222@qq.com>
2022-11-14 18:44:00 +08:00

139 lines
4.7 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/classification/ppcls/preprocessor.h"
#include "fastdeploy/function/concat.h"
#include "yaml-cpp/yaml.h"
#ifdef WITH_GPU
#include <cuda_runtime_api.h>
#endif
namespace fastdeploy {
namespace vision {
namespace classification {
PaddleClasPreprocessor::PaddleClasPreprocessor(const std::string& config_file) {
FDASSERT(BuildPreprocessPipelineFromConfig(config_file),
"Failed to create PaddleClasPreprocessor.");
initialized_ = true;
}
bool PaddleClasPreprocessor::BuildPreprocessPipelineFromConfig(
const std::string& config_file) {
processors_.clear();
YAML::Node cfg;
try {
cfg = YAML::LoadFile(config_file);
} catch (YAML::BadFile& e) {
FDERROR << "Failed to load yaml file " << config_file
<< ", maybe you should check this file." << std::endl;
return false;
}
auto preprocess_cfg = cfg["PreProcess"]["transform_ops"];
processors_.push_back(std::make_shared<BGR2RGB>());
for (const auto& op : preprocess_cfg) {
FDASSERT(op.IsMap(),
"Require the transform information in yaml be Map type.");
auto op_name = op.begin()->first.as<std::string>();
if (op_name == "ResizeImage") {
int target_size = op.begin()->second["resize_short"].as<int>();
bool use_scale = false;
int interp = 1;
processors_.push_back(
std::make_shared<ResizeByShort>(target_size, 1, use_scale));
} else if (op_name == "CropImage") {
int width = op.begin()->second["size"].as<int>();
int height = op.begin()->second["size"].as<int>();
processors_.push_back(std::make_shared<CenterCrop>(width, height));
} else if (op_name == "NormalizeImage") {
auto mean = op.begin()->second["mean"].as<std::vector<float>>();
auto std = op.begin()->second["std"].as<std::vector<float>>();
auto scale = op.begin()->second["scale"].as<float>();
FDASSERT((scale - 0.00392157) < 1e-06 && (scale - 0.00392157) > -1e-06,
"Only support scale in Normalize be 0.00392157, means the pixel "
"is in range of [0, 255].");
processors_.push_back(std::make_shared<Normalize>(mean, std));
} else if (op_name == "ToCHWImage") {
processors_.push_back(std::make_shared<HWC2CHW>());
} else {
FDERROR << "Unexcepted preprocess operator: " << op_name << "."
<< std::endl;
return false;
}
}
// Fusion will improve performance
FuseTransforms(&processors_);
return true;
}
void PaddleClasPreprocessor::UseGpu(int gpu_id) {
#ifdef WITH_GPU
use_cuda_ = true;
if (gpu_id < 0) return;
device_id_ = gpu_id;
cudaSetDevice(device_id_);
#else
FDWARNING << "FastDeploy didn't compile with WITH_GPU. "
<< "Will force to use CPU to run preprocessing." << std::endl;
use_cuda_ = false;
#endif
}
bool PaddleClasPreprocessor::Run(std::vector<FDMat>* images, std::vector<FDTensor>* outputs) {
if (!initialized_) {
FDERROR << "The preprocessor is not initialized." << std::endl;
return false;
}
if (images->size() == 0) {
FDERROR << "The size of input images should be greater than 0." << std::endl;
return false;
}
for (size_t i = 0; i < images->size(); ++i) {
for (size_t j = 0; j < processors_.size(); ++j) {
bool ret = false;
if (processors_[j]->Name() == "NormalizeAndPermute" && use_cuda_) {
ret = (*(processors_[j].get()))(&((*images)[i]), ProcLib::CUDA);
} else {
ret = (*(processors_[j].get()))(&((*images)[i]));
}
if (!ret) {
FDERROR << "Failed to processs image:" << i << " in "
<< processors_[i]->Name() << "." << std::endl;
return false;
}
}
}
outputs->resize(1);
// Concat all the preprocessed data to a batch tensor
std::vector<FDTensor> tensors(images->size());
for (size_t i = 0; i < images->size(); ++i) {
(*images)[i].ShareWithTensor(&(tensors[i]));
tensors[i].ExpandDim(0);
}
if (tensors.size() == 1) {
(*outputs)[0] = std::move(tensors[0]);
} else {
function::Concat(tensors, &((*outputs)[0]), 0);
}
(*outputs)[0].device_id = device_id_;
return true;
}
} // namespace classification
} // namespace vision
} // namespace fastdeploy