mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	 b565c15bf7
			
		
	
	b565c15bf7
	
	
	
		
			
			* Add tinypose model * Add PPTinypose python API * Fix picodet preprocess bug && Add Tinypose examples * Update tinypose example code * Update ppseg preprocess if condition * Update ppseg backend support type * Update permute.h * Update README.md * Update code with comments * Move files dir * Delete premute.cc * Add single model pptinypose * Delete pptinypose old code in ppdet * Code format * Add ppdet + pptinypose pipeline model * Fix bug for posedetpipeline * Change Frontend to ModelFormat * Change Frontend to ModelFormat in __init__.py * Add python posedetpipeline/ * Update pptinypose example dir name * Update README.md * Update README.md * Update README.md * Update README.md * Create keypointdetection_result.md * Create README.md * Create README.md * Create README.md * Update README.md * Update README.md * Create README.md * Fix det_keypoint_unite_infer.py bug * Create README.md * Update PP-Tinypose by comment * Update by comment * Add pipeline directory * Add pptinypose dir * Update pptinypose to align accuracy * Addd warpAffine processor * Update GetCpuMat to GetOpenCVMat * Add comment for pptinypose && pipline * Update docs/main_page.md * Add README.md for pptinypose * Add README for det_keypoint_unite * Remove ENABLE_PIPELINE option * Remove ENABLE_PIPELINE option * Change pptinypose default backend * PP-TinyPose Pipeline support multi PP-Detection models * Update pp-tinypose comment * Update by comments * Add single test example Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			81 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "fastdeploy/vision/utils/utils.h"
 | |
| 
 | |
| namespace fastdeploy {
 | |
| namespace vision {
 | |
| namespace utils {
 | |
| 
 | |
| void DarkParse(const std::vector<float>& heatmap, const std::vector<int>& dim,
 | |
|                std::vector<float>* coords, const int px, const int py,
 | |
|                const int index, const int ch) {
 | |
|   /*DARK postpocessing, Zhang et al. Distribution-Aware Coordinate
 | |
|   Representation for Human Pose Estimation (CVPR 2020).
 | |
|   1) offset = - hassian.inv() * derivative
 | |
|   2) dx = (heatmap[x+1] - heatmap[x-1])/2.
 | |
|   3) dxx = (dx[x+1] - dx[x-1])/2.
 | |
|   4) derivative = Mat([dx, dy])
 | |
|   5) hassian = Mat([[dxx, dxy], [dxy, dyy]])
 | |
|   */
 | |
|   std::vector<float>::const_iterator first1 = heatmap.begin() + index;
 | |
|   std::vector<float>::const_iterator last1 =
 | |
|       heatmap.begin() + index + dim[2] * dim[3];
 | |
|   std::vector<float> heatmap_ch(first1, last1);
 | |
|   cv::Mat heatmap_mat = cv::Mat(heatmap_ch).reshape(0, dim[2]);
 | |
|   heatmap_mat.convertTo(heatmap_mat, CV_32FC1);
 | |
|   cv::GaussianBlur(heatmap_mat, heatmap_mat, cv::Size(3, 3), 0, 0);
 | |
|   heatmap_mat = heatmap_mat.reshape(1, 1);
 | |
|   heatmap_ch = std::vector<float>(heatmap_mat.reshape(1, 1));
 | |
| 
 | |
|   float epsilon = 1e-10;
 | |
|   // sample heatmap to get values in around target location
 | |
|   float xy = log(fmax(heatmap_ch[py * dim[3] + px], epsilon));
 | |
|   float xr = log(fmax(heatmap_ch[py * dim[3] + px + 1], epsilon));
 | |
|   float xl = log(fmax(heatmap_ch[py * dim[3] + px - 1], epsilon));
 | |
| 
 | |
|   float xr2 = log(fmax(heatmap_ch[py * dim[3] + px + 2], epsilon));
 | |
|   float xl2 = log(fmax(heatmap_ch[py * dim[3] + px - 2], epsilon));
 | |
|   float yu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px], epsilon));
 | |
|   float yd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px], epsilon));
 | |
|   float yu2 = log(fmax(heatmap_ch[(py + 2) * dim[3] + px], epsilon));
 | |
|   float yd2 = log(fmax(heatmap_ch[(py - 2) * dim[3] + px], epsilon));
 | |
|   float xryu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px + 1], epsilon));
 | |
|   float xryd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px + 1], epsilon));
 | |
|   float xlyu = log(fmax(heatmap_ch[(py + 1) * dim[3] + px - 1], epsilon));
 | |
|   float xlyd = log(fmax(heatmap_ch[(py - 1) * dim[3] + px - 1], epsilon));
 | |
| 
 | |
|   // compute dx/dy and dxx/dyy with sampled values
 | |
|   float dx = 0.5 * (xr - xl);
 | |
|   float dy = 0.5 * (yu - yd);
 | |
|   float dxx = 0.25 * (xr2 - 2 * xy + xl2);
 | |
|   float dxy = 0.25 * (xryu - xryd - xlyu + xlyd);
 | |
|   float dyy = 0.25 * (yu2 - 2 * xy + yd2);
 | |
| 
 | |
|   // finally get offset by derivative and hassian, which combined by dx/dy and
 | |
|   // dxx/dyy
 | |
|   if (dxx * dyy - dxy * dxy != 0) {
 | |
|     float M[2][2] = {dxx, dxy, dxy, dyy};
 | |
|     float D[2] = {dx, dy};
 | |
|     cv::Mat hassian(2, 2, CV_32F, M);
 | |
|     cv::Mat derivative(2, 1, CV_32F, D);
 | |
|     cv::Mat offset = -hassian.inv() * derivative;
 | |
|     (*coords)[ch * 2] += offset.at<float>(0, 0);
 | |
|     (*coords)[ch * 2 + 1] += offset.at<float>(1, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace utils
 | |
| }  // namespace vision
 | |
| }  // namespace fastdeploy
 |