mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-09 02:20:17 +08:00
130 lines
5.2 KiB
C++
130 lines
5.2 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#ifdef ENABLE_VISION_VISUALIZE
|
||
|
||
#include "fastdeploy/vision/visualize/visualize.h"
|
||
#include "opencv2/highgui.hpp"
|
||
#include "opencv2/imgproc/imgproc.hpp"
|
||
|
||
namespace fastdeploy {
|
||
namespace vision {
|
||
|
||
cv::Mat Visualize::SwapBackgroundMatting(const cv::Mat& im,
|
||
const cv::Mat& background,
|
||
const MattingResult& result,
|
||
bool remove_small_connected_area) {
|
||
// 只可视化alpha,fgr(前景)本身就是一张图 不需要可视化
|
||
FDASSERT((!im.empty()), "Image can't be empty!");
|
||
FDASSERT((im.channels() == 3), "Only support 3 channels image mat!");
|
||
FDASSERT((!background.empty()), "Background image can't be empty!");
|
||
FDASSERT((background.channels() == 3),
|
||
"Only support 3 channels background image mat!");
|
||
auto vis_img = im.clone();
|
||
auto background_copy = background.clone();
|
||
int out_h = static_cast<int>(result.shape[0]);
|
||
int out_w = static_cast<int>(result.shape[1]);
|
||
int height = im.rows;
|
||
int width = im.cols;
|
||
int bg_height = background.rows;
|
||
int bg_width = background.cols;
|
||
// alpha to cv::Mat && 避免resize等操作修改外部数据
|
||
std::vector<float> alpha_copy;
|
||
alpha_copy.assign(result.alpha.begin(), result.alpha.end());
|
||
float* alpha_ptr = static_cast<float*>(alpha_copy.data());
|
||
cv::Mat alpha(out_h, out_w, CV_32FC1, alpha_ptr);
|
||
if (remove_small_connected_area) {
|
||
alpha = Visualize::RemoveSmallConnectedArea(alpha, 0.05f);
|
||
}
|
||
if ((vis_img).type() != CV_8UC3) {
|
||
(vis_img).convertTo((vis_img), CV_8UC3);
|
||
}
|
||
if ((background_copy).type() != CV_8UC3) {
|
||
(background_copy).convertTo((background_copy), CV_8UC3);
|
||
}
|
||
if ((bg_height != height) || (bg_width != width)) {
|
||
cv::resize(background, background_copy, cv::Size(width, height));
|
||
}
|
||
if ((out_h != height) || (out_w != width)) {
|
||
cv::resize(alpha, alpha, cv::Size(width, height));
|
||
}
|
||
uchar* vis_data = static_cast<uchar*>(vis_img.data);
|
||
uchar* background_data = static_cast<uchar*>(background_copy.data);
|
||
uchar* im_data = static_cast<uchar*>(im.data);
|
||
float* alpha_data = reinterpret_cast<float*>(alpha.data);
|
||
for (size_t i = 0; i < height; ++i) {
|
||
for (size_t j = 0; j < width; ++j) {
|
||
float alpha_val = alpha_data[i * width + j];
|
||
for (size_t c = 0; c < 3; ++c) {
|
||
vis_data[i * width * 3 + j * 3 + c] = cv::saturate_cast<uchar>(
|
||
static_cast<float>(im_data[i * width * 3 + j * 3 + c]) * alpha_val +
|
||
(1.f - alpha_val) * background_data[i * width * 3 + j * 3 + c]);
|
||
}
|
||
}
|
||
}
|
||
|
||
return vis_img;
|
||
}
|
||
// 对SegmentationResult做背景替换,由于分割模型可以预测多个类别,其中
|
||
// background_label 表示预测为背景类的标签
|
||
// 由于不同模型和数据集训练的背景类别标签可能不同,用户可以自己输入背景类对应的标签。
|
||
cv::Mat Visualize::SwapBackgroundSegmentation(
|
||
const cv::Mat& im, const cv::Mat& background, int background_label,
|
||
const SegmentationResult& result) {
|
||
FDASSERT((!im.empty()), "Image can't be empty!");
|
||
FDASSERT((im.channels() == 3), "Only support 3 channels image mat!");
|
||
FDASSERT((!background.empty()), "Background image can't be empty!");
|
||
FDASSERT((background.channels() == 3),
|
||
"Only support 3 channels background image mat!");
|
||
auto vis_img = im.clone();
|
||
auto background_copy = background.clone();
|
||
int height = im.rows;
|
||
int width = im.cols;
|
||
int bg_height = background.rows;
|
||
int bg_width = background.cols;
|
||
if ((vis_img).type() != CV_8UC3) {
|
||
(vis_img).convertTo((vis_img), CV_8UC3);
|
||
}
|
||
if ((background_copy).type() != CV_8UC3) {
|
||
(background_copy).convertTo((background_copy), CV_8UC3);
|
||
}
|
||
if ((bg_height != height) || (bg_width != width)) {
|
||
cv::resize(background, background_copy, cv::Size(width, height));
|
||
}
|
||
uchar* vis_data = static_cast<uchar*>(vis_img.data);
|
||
uchar* background_data = static_cast<uchar*>(background_copy.data);
|
||
uchar* im_data = static_cast<uchar*>(im.data);
|
||
float keep_value = 0.f;
|
||
for (size_t i = 0; i < height; ++i) {
|
||
for (size_t j = 0; j < width; ++j) {
|
||
int category_id = result.label_map[i * width + j];
|
||
if (background_label != category_id) {
|
||
keep_value = 1.0f;
|
||
} else {
|
||
keep_value = 0.f;
|
||
}
|
||
for (size_t c = 0; c < 3; ++c) {
|
||
vis_data[i * width * 3 + j * 3 + c] = cv::saturate_cast<uchar>(
|
||
static_cast<float>(im_data[i * width * 3 + j * 3 + c]) *
|
||
keep_value +
|
||
(1.f - keep_value) * background_data[i * width * 3 + j * 3 + c]);
|
||
}
|
||
}
|
||
}
|
||
return vis_img;
|
||
}
|
||
|
||
} // namespace vision
|
||
} // namespace fastdeploy
|
||
#endif |