mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00

* Add PaddleOCR Support * Add PaddleOCR Support * Add PaddleOCRv3 Support * Add PaddleOCRv3 Support * Update README.md * Update README.md * Update README.md * Update README.md * Add PaddleOCRv3 Support * Add PaddleOCRv3 Supports * Add PaddleOCRv3 Suport * Fix Rec diff * Remove useless functions * Remove useless comments * Add PaddleOCRv2 Support * Add PaddleOCRv3 & PaddleOCRv2 Support * remove useless parameters * Add utils of sorting det boxes * Fix code naming convention * Fix code naming convention * Fix code naming convention * Fix bug in the Classify process * Imporve OCR Readme * Fix diff in Cls model * Update Model Download Link in Readme * Fix diff in PPOCRv2 * Improve OCR readme * Imporve OCR readme * Improve OCR readme * Improve OCR readme * Imporve OCR readme * Improve OCR readme * Fix conflict * Add readme for OCRResult * Improve OCR readme * Add OCRResult readme * Improve OCR readme * Improve OCR readme * Add Model Quantization Demo * Fix Model Quantization Readme * Fix Model Quantization Readme * Add the function to do PTQ quantization * Improve quant tools readme * Improve quant tool readme * Improve quant tool readme * Add PaddleInference-GPU for OCR Rec model * Add QAT method to fastdeploy-quantization tool * Remove examples/slim for now * Move configs folder * Add Quantization Support for Classification Model * Imporve ways of importing preprocess * Upload YOLO Benchmark on readme * Upload YOLO Benchmark on readme * Upload YOLO Benchmark on readme * Improve Quantization configs and readme * Add support for multi-inputs model * Add backends and params file for YOLOv7 * Add quantized model deployment support for YOLO series * Fix YOLOv5 quantize readme * Fix YOLO quantize readme * Fix YOLO quantize readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Improve quantize YOLO readme * Fix bug, change Fronted to ModelFormat * Change Fronted to ModelFormat * Add examples to deploy quantized paddleclas models * Fix readme * Add quantize Readme * Add quantize Readme * Add quantize Readme * Modify readme of quantization tools * Modify readme of quantization tools * Improve quantization tools readme * Improve quantization readme * Improve PaddleClas quantized model deployment readme * Add PPYOLOE-l quantized deployment examples * Improve quantization tools readme * Improve Quantize Readme * Fix conflicts * Fix conflicts * improve readme * Improve quantization tools and readme * Improve quantization tools and readme * Add quantized deployment examples for PaddleSeg model * Fix cpp readme * Fix memory leak of reader_wrapper function * Fix model file name in PaddleClas quantization examples * Update Runtime and E2E benchmark * Update Runtime and E2E benchmark * Rename quantization tools to auto compression tools * Remove PPYOLOE data when deployed on MKLDNN * Fix readme * Support PPYOLOE with OR without NMS and update readme * Update Readme * Update configs and readme * Update configs and readme * Add Paddle-TensorRT backend in quantized model deploy examples * Support PPYOLOE+ series
YOLOv5量化模型部署
FastDeploy已支持部署量化模型,并提供一键模型自动化压缩的工具. 用户可以使用一键模型自动化压缩工具,自行对模型量化后部署, 也可以直接下载FastDeploy提供的量化模型进行部署.
FastDeploy一键模型自动化压缩工具
FastDeploy 提供了一键模型自动化压缩工具, 能够简单地通过输入一个配置文件, 对模型进行量化. 详细教程请见: 一键模型自动化压缩工具
下载量化完成的YOLOv5s模型
用户也可以直接下载下表中的量化模型进行部署.(点击模型名字即可下载)
Benchmark表格说明:
- Rtuntime时延为模型在各种Runtime上的推理时延,包含CPU->GPU数据拷贝,GPU推理,GPU->CPU数据拷贝时间. 不包含模型各自的前后处理时间.
- 端到端时延为模型在实际推理场景中的时延, 包含模型的前后处理.
- 所测时延均为推理1000次后求得的平均值, 单位是毫秒.
- INT8 + FP16 为在推理INT8量化模型的同时, 给Runtime 开启FP16推理选项
- INT8 + FP16 + PM, 为在推理INT8量化模型和开启FP16的同时, 开启使用Pinned Memory的选项,可加速GPU->CPU数据拷贝的速度
- 最大加速比, 为FP32时延除以INT8推理的最快时延,得到最大加速比.
- 策略为量化蒸馏训练时, 采用少量无标签数据集训练得到量化模型, 并在全量验证集上验证精度, INT8精度并不代表最高的INT8精度.
- CPU为Intel(R) Xeon(R) Gold 6271C, 所有测试中固定CPU线程数为1. GPU为Tesla T4, TensorRT版本8.4.15.
Runtime Benchmark
模型 | 推理后端 | 部署硬件 | FP32 Runtime时延 | INT8 Runtime时延 | INT8 + FP16 Runtime时延 | INT8+FP16+PM Runtime时延 | 最大加速比 | FP32 mAP | INT8 mAP | 量化方式 |
---|---|---|---|---|---|---|---|---|---|---|
YOLOv5s | TensorRT | GPU | 7.87 | 4.51 | 4.31 | 3.17 | 2.48 | 37.6 | 36.7 | 量化蒸馏训练 |
YOLOv5s | Paddle-TensorRT | GPU | 7.99 | None | 4.46 | 3.31 | 2.41 | 37.6 | 36.8 | 量化蒸馏训练 |
YOLOv5s | ONNX Runtime | CPU | 176.41 | 91.90 | None | None | 1.90 | 37.6 | 33.1 | 量化蒸馏训练 |
YOLOv5s | Paddle Inference | CPU | 213.73 | 130.19 | None | None | 1.64 | 37.6 | 35.2 | 量化蒸馏训练 |
端到端 Benchmark
模型 | 推理后端 | 部署硬件 | FP32 Runtime时延 | INT8 Runtime时延 | INT8 + FP16 Runtime时延 | INT8+FP16+PM Runtime时延 | 最大加速比 | FP32 mAP | INT8 mAP | 量化方式 |
---|---|---|---|---|---|---|---|---|---|---|
YOLOv5s | TensorRT | GPU | 24.61 | 21.20 | 20.78 | 20.94 | 1.18 | 37.6 | 36.7 | 量化蒸馏训练 |
YOLOv5s | Paddle-TensorRT | GPU | 23.53 | None | 21.98 | 19.84 | 1.28 | 37.6 | 36.8 | 量化蒸馏训练 |
YOLOv5s | ONNX Runtime | CPU | 197.323 | 110.99 | None | None | 1.78 | 37.6 | 33.1 | 量化蒸馏训练 |
YOLOv5s | Paddle Inference | CPU | 235.73 | 144.82 | None | None | 1.63 | 37.6 | 35.2 | 量化蒸馏训练 |